• Title/Summary/Keyword: FD-TD method

Search Result 12, Processing Time 0.016 seconds

Application on the Modeling Rusults of GPR Wave Propagation through Concrete Specimens for Rebar Detection In Concrete Specimens (전자파 모델링을 이용한 콘크리트 내 철근탐사)

  • 남국광;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.135-140
    • /
    • 2001
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. In the experiments, three concrete specimens are made with the dimensions of 100 cm (length) x 100 cm (wideth) x 14 cm (depth). Three specimens had a Dl6 steel bar at 8, 10, 12 cm depth.

  • PDF

Investigation of Influences of UWB Antennas on Impulse Radio Channel (임펄스 전파 채널에서의 초광대역 안테나 영향 연구)

  • Park Young-Jin;Song Jong-Hwa;Kim Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.165-170
    • /
    • 2005
  • In this paper, influences of a ultra wideband (UWB) antenna on impulse channel measurement are investigated in time domain (TD) and frequency domain (FD) as well. Firstly, impulse response of an UWB antenna is obtained and then using the result of impulse response of the UWB antenna, influences of the antenna on impulse radio channel is analyzed. Furthermore, using the impulse response of the UWB anenna, method of impulse radio channel analysis is presented by excluding the effect of the antenna from an impulse radio channel. For verifying the theory, a modified conical monopole antenna is designed for measuring impulse radio channel and its impulse response is obtained. After that, in order to investigate the effects of the UWB antenna on an impulse radio channel, multipath environments are set up in an anechonic chamber and transmission coefficient for each multipath environment is measured with an aid of vector network analyzer. Data measured in frequency domain is transformed into those in time domain by way of signal processing. Measurement shows that such properties of the antenna as dispersion and ringing affect impulse radio channel. Moreover, using the impulse response of the antenna, impulse response of only multipath channel is obtained.