• Title/Summary/Keyword: FCM Clustering

Search Result 222, Processing Time 0.028 seconds

Nonlinear System Modeling Using Genetic Algorithm and FCM-basd Fuzzy System (유전알고리즘과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링)

  • 곽근창;이대종;유정웅;전명근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.491-499
    • /
    • 2001
  • In this paper, the scheme of an efficient fuzzy rule generation and fuzzy system construction using GA(genetic algorithm) and FCM(fuzzy c-means) clustering algorithm is proposed for TSK(Takagi-Sugeno-Kang) type fuzzy system. In the structure identification, input data is transformed by PCA(Principal Component Analysis) to reduce the correlation among input data components. And then, a set fuzzy rules are generated for a given criterion by FCM clustering algorithm . In the parameter identification premise parameters are optimally searched by GA. On the other hand, the consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. From this one can systematically obtain the valid number of fuzzy rules which shows satisfying performance for the given problem. Finally, we applied the proposed method to the Box-Jenkins data and rice taste data modeling problems and obtained a better performance than previous works.

  • PDF

MRI Data Segmentation Using Fuzzy C-Mean Algorithm with Intuition (직관적 퍼지 C-평균 모델을 이용한 자기 공명 영상 분할)

  • Kim, Tae-Hyun;Park, Dong-Chul;Jeong, Tai-Kyeong;Lee, Yun-Sik;Min, Soo-Young
    • Journal of IKEEE
    • /
    • v.15 no.3
    • /
    • pp.191-197
    • /
    • 2011
  • An image segmentation model using fuzzy c-means with intuition (FCM-I) model is proposed for the segmentation of magnetic resonance image in this paper. In FCM-I, a measurement called intuition level is adopted so that the intuition level helps to alleviate the effect of noises. A practical magnetic resonance image data set is used for image segmentation experiment and the performance is compared with those of some conventional algorithms. Results show that the segmentation method based on FCM-I compares favorably to several conventional clustering algorithms. Since FCM-I produces cluster prototypes less sensitive to noises and to the selection of involved parameters than the other algorithms, FCM-I is a good candidate for image segmentation problems.

Efficient Shot Change Detection Using Clustering Method on MPEG Video Frames (MPEG 비디오 프레임에서 FCM 클러스터링 기법을 이용한 효과적인 장면 전환 검출)

  • Lim, Seong-Jae;Lee, Bae-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.751-754
    • /
    • 2000
  • In this paper, we propose an efficient method to detect abrupt shot changes in compressed MPEG video data by using reference ratios among video frames. The reference ratios among video frames imply the degree of similarities among adjacent frames by prediction coded type of each frames. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. This paper proposes an efficient shot change detection algorithm by using Fuzzy c-means(FCM) clustering algorithm. The FCM clustering uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.

  • PDF

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • 신영숙
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • This Paper extracts the edge of main components of face with Gator wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

  • PDF

A Kernel based Possibilistic Approach for Clustering and Image Segmentation (클러스터링 및 영상 분할을 위한 커널 기반의 Possibilistic 접근 방법)

  • Choi, Kil-Soo;Choi, Byung-In;Rhee, Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.889-894
    • /
    • 2004
  • The fuzzy kernel c-means (FKCM) algorithm, which uses a kernel function, can obtain more desirable clustering results than fuzzy c-means (FCM) for not only spherical data but also non-spherical data. However, it can be sensitive to noise as in the FCM algorithm. In this paper, a kernel function is applied to the possibilistic c-means (PCM) algorithm and is shown to be robust for data with additive noise. Several experimental results show that the proposed kernel possibilistic c-means (KPCM) algorithm out performs the FKCM algorithm for general data with additive noise.

Diagnosis of Pet by Using FCM Clustering

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2021
  • In this paper, we propose a method of disease diagnosis system that can diagnose the health status of household pets for the people who lack veterinary knowledge. The proposed diagnosis system holds 50 different kinds of diseases with the symptoms for each of them as a database to provide results from symptom input. Each disease database has its own symptom codes for a disease, and by using the disease database, FCM clustering technique is applied to disease which outputs membership degree to determine diseases close to the input symptom as a pet diagnosis result. The implementation results of the proposed pet diagnosis system were obtained by the number of selected symptoms and the possibility values of the diseases that have the selected symptoms being sorted in descending order to derive top 3 diseases closest to the pet's symptom.

Majority-Voting FCM with Implied Validity Measure (타당성 척도를 내재한 머조리티 보팅 FCM)

  • Lee, Gang-Hwa;Lee, Dong-Il;Lee, Suk-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.543-548
    • /
    • 2002
  • It is well known that FCM is an indispensible tool for fuzzy clustering. The problems of using FCM are 1) it is sensitive to the initial random membership functions and 2) FCM inherently requires the number of clusters. Hence we need to run FCM algorithms with an appropriate validity measure until we find a suitable number of clusters. In this paper, we suggest the Majority-Voting FCM with implied validity measure. With this algorithm, we can solve the aforementioned problems. The working simulation results are provided. The contributions are 1) MV-FCM algorithm and 2) its definitive capability of being an excellent validity measure.

A Watershed-based Texture Segmentation Method Using Marker Clustering (마커 클러스터링을 이용한 유역변환 기반의 질감 분할 기법)

  • Hwang, Jin-Ho;Kim, Won-Hee;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.441-449
    • /
    • 2007
  • In clustering for image segmentation, large amount of computation and typical segmentation errors have been important problems. In the paper, we suggest a new method for minimizing these problems. Markers in marker-controlled watershed transform represent segmented areas because they are starting-points of extending areas. Thus, clustering restricted by marker pixels can reduce computational complexity. In our proposed method, the markers are selected by Gabor texture energy, and cluster information of them are generated by FCM (fuzzy c-mean) clustering. Generated areas from watershed transform are merged by using cluster information of markers. In the test of Brodatz' texture images, we improved typical partition-errors obviously and obtained less computational complexity compared with previous FCM clustering algorithms. Overall, it also took regular computational time.

  • PDF

Noise resistant density based Fuzzy C-means Clustering Algorithm (노이즈에 강한 밀도를 이용한 Fuzzy C-means 클러스터링 알고리즘)

  • Go, Jeong-Won;Choe, Byeong-In;Lee, Jeong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.211-214
    • /
    • 2006
  • Fuzzy C-Means(FCM) 알고리즘은 probabilitic 멤버쉽을 사용하는 클러스터링 방법으로서 널리 쓰이고 있다. 하지만 이 방법은 노이즈에 대하여 민감한 성질을 가진다는 단점이 있다. 따라서 본 논문에서는 이러한 노이즈에 민감한 성질을 보완하기 위해서 데이터의 밀도추정을 이용하여 새로운 FCM 알고리즘을 제안한다. 본 논문에서 제안된 알고리즘은 FCM과 비슷한 성능의 클러스터링 수행이 가능하며, 노이즈가 포함된 데이터에서는 FCM보다 더 나은 성능을 보여준다.

  • PDF

Recognition and Tracking of Moving Objects Using Label-merge Method Based on Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘 기반의 라벨 병합을 이용한 이동물체 인식 및 추적)

  • Lee, Seong Min;Seong, Il;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.293-300
    • /
    • 2018
  • We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.