• 제목/요약/키워드: FCM(Fuzzy C_Means)

검색결과 234건 처리시간 0.025초

안저영상 해석을 위한 특징영역의 분할에 관한 연구 (A Study on the Feature Region Segmentation for the Analysis of Eye-fundus Images)

  • 강전권;한영환
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권2호
    • /
    • pp.121-128
    • /
    • 1995
  • Information about retinal blood vessels can be used in grading disease severity or as part of the process of automated diagnosis of diseases with ocular menifestations. In this paper, we address the problem of detecting retinal blood vessels and optic disk (papilla) in eye-fundus images. We introduce an algorithm for feature extraction based on Fuzzy Clustering algorithm (fuzzy c-means). A method of finding the optic disk (papilla) is proposed in the eye-fundus images. Additionally, the inrormations such as position and area of the optic disk are extracted. The results are compared to those obtained from other methods. The automatic detection of retinal blood vessels and optic disk in the eye-rundus images could help physicians in diagnosing ocular diseases.

  • PDF

Developing an Intelligent Health Pre-diagnosis System for Korean Traditional Medicine Public User

  • Kim, Kwang Baek
    • Journal of information and communication convergence engineering
    • /
    • 제15권2호
    • /
    • pp.85-90
    • /
    • 2017
  • Expert systems for health diagnosis are only for medical experts who have deep knowledge in the field but we need a self-checking pre-diagnosis system for preventive public health monitoring. Korea Traditional Medicine is popular in use among Korean public but there exist few available health information systems on the internet. A computerized self-checking diagnosis system is proposed to reduce the social cost by monitoring health status with simple symptom checking procedures especially for Korea Traditional Medicine users. Based on the national reports for disease/symptoms of Korea Traditional Medicine, we build a reliable database and devise an intelligent inference engine using fuzzy c-means clustering. The implemented system gives five most probable diseases a user might have with respect to symptoms given by the user. Inference results are verified by Korea Traditional Medicine doctors as sufficiently accurate and easy to use.

유럽지역 컨테이너항만의 체계적 분류에 관한 연구 (Systematic Classification of Container Ports in European Union Countries)

  • 여기태
    • 한국지역지리학회지
    • /
    • 제12권3호
    • /
    • pp.382-391
    • /
    • 2006
  • 본 연구는 경쟁 및 협력현상을 중심으로 항만을 체계적으로 분류하는 방법 및 모델을 제시하기 위하여 유럽지역 21개 항만들을 대상으로 분석을 수행하였다. 그 결과, 대상지역 21개 주요 항만은 총 6가지의 독자적인 위상을 갖는 항만군으로 분류됨을 확인하였다. 가장 경쟁에서 우위를 점하는 항만은 네덜란드의 로테르담항만이 차지하였으며, 이를 근접한 위치에서 추격하는 항만군은 함부르그와 엔트워프항만이 속한 B 군집으로 확인되었다. 이상의 상위 항만군과 경쟁의 관계를 갖고 있지 않으나, 협력전략이 필요한 항만군으로는 A군집 6개 항만과 E군집 4개 항만이 도출되었다. 또한, 항만의 보다 나은 서비스를 위하여 다양한 전략이 요청되는 항만군은 D군집 6개 항만과 F군집 2개 항만으로 제시되었다. 한편, 방법론을 통하여 제시된 각 군집내의 항만의 소속 정도을 통하여 향후 변화가능성, 성장가능성 등도 파악할 수 있어 향후 연구대상지역의 항만들을 분류하고 분석하는 문제에 매우 유용한 시사점을 제공하였다.

  • PDF

PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템 설계 (Design of Optimized pRBFNNs-based Night Vision Face Recognition System Using PCA Algorithm)

  • 오성권;장병희
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.225-231
    • /
    • 2013
  • 본 연구에서는 PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템을 설계 하고자 한다. 조명이 없는 주위 상태 하에서 조도가 낮기 때문에 CCD 카메라를 이용하여 영상을 획득하는 것이 어렵다. 본 논문에서는 낮은 조도에 의해 왜곡된 이미지의 품질을 나이트 비전 카메라와 히스토그램 평활화를 사용하여 향상시킨다. 그리고 얼굴과 비얼굴 이미지 영역 사이에서 얼굴 이미지를 검출하기 위하여 Ada-Boost 알고리즘을 사용한다. 추출된 고차원 특징 데이터를 저차원의 특징 데이터로 변환하기 위하여 데이터 차원축소 기법인 주성분 분석법(Principal Components Analysis; PCA)을 사용한다. 또한 인식 모듈로서 pRBFNNs(Polynomial- based Radial Basis Function Neural Networks) 패턴분류기를 소개한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 구성되어 있다. 조건부는 FCM (Fuzzy C-means) 클러스터링을 사용하여 입력공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 그리고 차분진화 (Differential Evolution; DE) 알고리즘을 사용하여 모델의 파라미터를 최적화 한다.

방사형 기저함수 신경회로망 기반 숫자 인식 시스템의 설계 : 전처리 알고리즘을 이용한 인식성능의 비교연구 (Design of Digits Recognition System Based on RBFNNs : A Comparative Study of Pre-processing Algorithms)

  • 김은후;김봉연;오성권
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.416-424
    • /
    • 2017
  • In this study, we propose a design of digits recognition system based on RBFNNs through a comparative study of pre-processing algorithms in order to recognize digits in handwritten. Histogram of Oriented Gradient(HOG) is used to get the features of digits in the proposed digits recognition system. In the pre-processing part, a dimensional reduction is executed by using Principal Component Analysis(PCA) and (2D)2PCA which are widely adopted methods in order to minimize a loss of the information during the reduction process of feature space. Also, The architecture of radial basis function neural networks consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, the connection weights are used as the extended type of polynomial expression such as constant, linear, quadratic and modified quadratic. By using MNIST handwritten digit benchmarking database, experimental results show the effectiveness and efficiency of proposed digit recognition system when compared with other studies.

고농도 오존 예측을 위한 향상된 변환 기법과 예측 성능 평가 (Modified Transformation and Evaluation for High Concentration Ozone Predictions)

  • 천성표;김성신;이종범
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.435-442
    • /
    • 2007
  • 대기중의 고농도 오존의 피해를 줄이기 위해서, 고농도 오존 발생 전에 미리 오존 농도를 예측하기 위한 연구가 진행되었다. 하지만, 고농도 오존은 그 발생 빈도가 매우 희소하고, 대기 오존 생성 과정이 매우 비선형적이며 복잡한 특징이 있다. 이러한 특징을 극복하고 보다 정확한 예측 모델을 개발하기 위하여, 본 논문에서는 다양한 데이터 처리 기법을 도입하였다. 데이터 전처리과정에서 FCM(Fuzzy C-mean) 방법을 이용하여 오존 농도별 데이터 클러스터링을 시도하였으며, 결측 또는 비정상 데이터를 처리할 목적으로 Rejection 표본 추출법을 이용하였고, 모델의 입력과 출력의 상관관계를 향상시키기 위해서 로그 변환기법을 응용하였다. 오존 예측을 위한 모델링 기법은 DPNN(Dynamical Polynomial Neural Networks)을 이용하였으며, 최소 바이어스 판별법(Minimum Bias Criterion)으로 최적화된 모델을 선택하였다. 끝으로, 본 논문에서는 로그 변환기법이 예측 모델에 미치는 영향을 보이기 위해서 입력 데이터를 두 개의 집합으로 나누어 다양한 방법으로 예측 결과를 평가했다. 결과적으로 계절적 영향에 의해 특정 분포를 가지는 오존 관련 데이터에 있어서 로그 변환 방법이 모델의 성능을 향상시킬 수 있다는 것을 보였다.

Deformable Template과 GA를 이용한 얼굴 인식 및 아바타 자동 생성 (Face Detection for Automatic Avatar Creation by using Deformable Template and GA)

  • 박태영;권민수;강훈
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.110-115
    • /
    • 2005
  • 본 논문에서는 아바타를 자동으로 생성하기 위한 컬러 이미지 상에서의 얼굴, 눈, 입술 윤곽선 검출 기법을 제안하였다. 제안된 기법에서는 먼저 조명의 영향을 최대한 배제하기 위하여 HSI 색상 모델을 사용하였고 I 정보를 제외한 HS 평면상에서 피부색을 정의하고 이를 이용하여 입력된 이미지로부터 피부 영역을 검출하였다. 그리고 변형가능 템플릿과 유전자 알고리즘을 이용하여 얼굴, 눈, 입의 윤곽선을 검출하였다. 여기서 변형가능 템플릿은 B-spline 곡선과 컨트롤 포인트 벡터로 이루어지며, 이것은 다양한 얼굴, 눈, 입술 모양의 표현을 가능하게 한다. 또 유전자 알고리즘은 자연계의 진화와 선택원리를 응용한 매우 효율적인 탐색 알고리즘이다 다음으로, 검출된 얼굴과 각 요소들의 윤곽선과 퍼지 C-평균 군집화를 이용하여 아바타를 생성하게 된다. 퍼지 C-평균 군집화는 얼굴색을 일정한 수로 단순화하는 과정에서 사용하였다. 결과적으로, 이와 같은 기법을 이용하여 기존의 정해진 이미지를 가지고 표현하던 아바타와는 달리 사용자의 특성을 표현할 수 있는 아바타를 자동으로 생성할 수 있다.

이 기종 네트워크에서 퍼지 알고리즘과 MAUT에 기반을 둔 적응적 보안 관리 모델 (Adaptive Security Management Model based on Fuzzy Algorithm and MAUT in the Heterogeneous Networks)

  • 양석환;정목동
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.104-115
    • /
    • 2010
  • 유비쿼터스 기술의 보편화에 따라 유비쿼터스 환경의 보안 취약성을 해결하기 위한 보안기술의 연구가 주목받고 있다. 그러나 현재의 대다수 보안 시스템은 고정된 규칙을 기반으로 하는 것으로서, 유비쿼터스 기반 사용자의 다양한 상황에 제대로 대응하지 못하는 문제점이 있다. 또한 기존의 상황인식 보안 연구는 ACL (Access Control List) 혹은 RBAC (Role-Based Access Control) 계열의 연구가 많이 수행되고 있으나 보안정책의 관리에 대한 오버헤드가 크고, 또한 예상하지 못한 상황에 대한 대응이 어렵다는 문제점을 보이고 있다. 이에 본 논문에서는 퍼지 알고리즘과 MAUT를 이용하여 다양한 상황을 인식하고 적절한 보안기능을 제공하는 상황인식 보안 서비스를 제안한다.

퍼지 벡터 양자화기 사상화와 신경망에 의한 화자적응 음성합성 (Speaker-Adaptive Speech Synthesis based on Fuzzy Vector Quantizer Mapping and Neural Networks)

  • 이진이;이광형
    • 한국정보처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.149-160
    • /
    • 1997
  • 본 연구에서는 퍼지사상화(fuzzy mapping)와 FLVQ(fuzzy learning vector quantization)에 의한 사상된(mapped)코드북을 사용하는 화자적용 음성합성 알고리즘 을 제안하고, 기존의 음성합성결과와 비교한다. 입력화자와 기준화자의 코드북은 FLVQ 방법으로 작성한다. 사상된 코드북은 퍼지 히스토그램을 작성하여 이들을 선형 결합함으로써 얻어지는 퍼지 사상화에 의하여 작성된다. 대응 코드벡터의 퍼지 히스 토그램은 동일 입력벡터에 대해 선택된 입력화자의 코드벡터와 기준화자의 코드벡터 사이의 DTW(dynamic time warping)을 행하여 대응하는 코드벡터들의 소속값 (membership value)을 누적하여 얻는다. 음성합성시에는 사상된 코드북을 사용하여 입력화자의 음성을 퍼지벡터 양자화한 다음, FCM(fuzzy c means) 합성규칙을 사용하 여 사상된 코드북내의 코드벡터가 아닌 새로운 하나의 합성벡터를 얻게 되어 좀 더 입력화자에 적응된 합성음을 얻게 된다. 이 기술의 성능평가는 성별이 서로 다른 화 자를 입력화자 및 기준화자로 선정하여 입력화자의 음성에 가까운 정도로 평가하였으 며 그 결과 기존의 음성합성보다 입력화자에 더 적용된 합성음을 얻었다.

  • PDF

AWS자료 기반 SVR과 뉴로-퍼지 알고리즘 구현 호우주의보 가이던스 연구 (A Study on Heavy Rainfall Guidance Realized with the Aid of Neuro-Fuzzy and SVR Algorithm Using AWS Data)

  • 임승준;오성권;김용혁;이용희
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.526-533
    • /
    • 2014
  • In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.