• 제목/요약/키워드: FCM(Fuzzy C_Means)

검색결과 234건 처리시간 0.035초

Fuzzy system construction based on Genetic Algorithms and fuzzy clustering

  • Kwak, Keun-Chang;Kim, Seoung-Suk;Ryu, Jeong-Woong;Chun, Myung-Geun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.109.6-109
    • /
    • 2002
  • In this paper, the scheme of fuzzy system construction using GA(genetic algorithm) and FCM(Fuzzy c-means) clustering algorithm is proposed for TSK(Takagi-Sugeno-Kang) type fuzzy system. in the structure identification, input data is trans-formed by PCA(Principal Component Analysis) to reduce the correlation among input data components. And then, the number of fuzzy rule is obtained by a given performance criterion. In the parameter identification, the premise parameters are optimally searched by GA. On the other hand, the consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. From this, one can systematically obtain optimal parameter and the v..

  • PDF

An eigenspace projection clustering method for structural damage detection

  • Zhu, Jun-Hua;Yu, Ling;Yu, Li-Li
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.179-196
    • /
    • 2012
  • An eigenspace projection clustering method is proposed for structural damage detection by combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data, median values of the projections are considered as damage features, and the fuzzy c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method has been validated using a three-story frame structure built and tested by Los Alamos National Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel principal component analysis (KPCA), are compared for better extraction of damage features, further six kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that the distance selection depends on the distribution of features. For the optimal choice of projections, it is recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount of data need to be processed due to its higher correct decisions and less computational costs.

방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용 (Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application)

  • 강전성;오성권
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

뇌 자기공명영상의 분할 및 대칭성을 이용한 자동적인 병변인식 (Segmentation of MR Brain Image and Automatic Lesion Detection using Symmetry)

  • 윤옥경;곽동민;김헌순;오상근;이성기
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권2호
    • /
    • pp.149-154
    • /
    • 1999
  • 자기공명영상은 다른 의료영상에 비해서 보다 정확한 해부학적인 진단 정보를 제공해 주므로 널리 이용되고 있다. 본 논문에서는 이차원 축단면 뇌 자기총명영상을 분할하는 자동화 알고리즘과 병별에 의해서 손상된 슬라이스를 검출하는 알고리즘을 제안하였다. 영상분활 과정은 두단계로 구성되어 있는데, 첫 단계에서는 이진화와 형태학적 연산을 이용하여 대뇌영역을 추출하고, 둘째 단계에서는 FCM(Fuzzy C-means)알고리즘을 이용하여 추출된 대뇌 내부의 각 조직을 분할하였다. FCM알고리즘은 분할하는 조직의 수가 증가할수록 급격하게 많은 실행시간을 요구하므로 제안하는 두단계 영상분할 과정을 통하여 실행시간을 향상시켰다. 병변 인식은 해부학적지식과 패턴매칭을 이용하였다.

  • PDF

웨이블렛과 퍼지 C-Means 클러스터링을 이용한 얼굴 인식 (Face recognition using Wavelets and Fuzzy C-Means clustering)

  • 윤창용;박정호;박민용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.583-586
    • /
    • 1999
  • In this paper, the wavelet transform is performed in the input 256$\times$256 color image and decomposes a image into low-pass and high-pass components. Since the high-pass band contains the components of three directions, edges are detected by combining three parts. After finding the position of face using the histogram of the edge component, a face region in low-pass band is cut off. Since RGB color image is sensitively affected by luminances, the image of low pass component is normalized, and a facial region is detected using face color informations. As the wavelet transform decomposes the detected face region into three layer, the dimension of input image is reduced. In this paper, we use the 3000 images of 10 persons, and KL transform is applied in order to classify face vectors effectively. FCM(Fuzzy C-Means) algorithm classifies face vectors with similar features into the same cluster. In this case, the number of cluster is equal to that of person, and the mean vector of each cluster is used as a codebook. We verify the system performance of the proposed algorithm by the experiments. The recognition rates of learning images and testing image is computed using correlation coefficient and Euclidean distance.

  • PDF

Structure Preserving Dimensionality Reduction : A Fuzzy Logic Approach

  • Nikhil R. Pal;Gautam K. Nandal;Kumar, Eluri-Vijaya
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.426-431
    • /
    • 1998
  • We propose a fuzzy rule based method for structure preserving dimensionality reduction. This method selects a small representative sample and applies Sammon's method to project it. The input data points are then augmented by the corresponding projected(output) data points. The augmented data set thus obtained is clustered with the fuzzy c-means(FCM) clustering algorithm. Each cluster is then translated into a fuzzy rule for projection. Our rule based system is computationally very efficient compared to Sammon's method and is quite effective to project new points, i.e., it has good predictability.

  • PDF

우리 나라 토양의 입도특성 (The Particle Size Distribution of Korean Soils)

  • 우철웅;장병욱
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.163-166
    • /
    • 2003
  • In this study, a grouping of particle-size distributions(PSDs) by means of the fuzzy c-means clustering method(FCM) was presented. The classification was performed with the whole and the major soil series representing pedological origin. In case of the major soil series, PSDs were clustered as $2{\sim}4$ groups and the characteristics of clustering results were quite different between the soil series. It was found that the characteristics of PSDs at center of each class can be explained by formation process of each soil series. In case of whole soil data, PSDs were classified to 8 classes in which 4 classes were single mode and 4 classes were bimode distributions. Through this study, it is concluded that pedogenetic process is a plausible explanation for grain size distribution of soils.

  • PDF

패턴인식의 정화성을 향상하기 위한 지능시스템 연구 (A study of intelligent system to improve the accuracy of pattern recognition)

  • 정성부;김주웅
    • 한국정보통신학회논문지
    • /
    • 제12권7호
    • /
    • pp.1291-1300
    • /
    • 2008
  • 본 논문에서는 패턴인식의 정확성을 향상시키기 위한 지능시스템을 제안한다. 제안한 지능시스템은 신경회로망의 무감독학습 방법인 SOPM(Self Organizing Feature Map), LVQ(Learning Vector Quantization), 그리고 퍼지이론의 FCM(Fuzzy C-means)을 이용하여 구성한다. 제안한 지능시스템의 유용성은 실험을 통해 확인한다. 실험은 Fisher의 Iris 데이터 분류, Cambridge 대학의 Olivetti 연구실(ORL; Olivetti Research Laboratory)에서 제공하는 얼굴 데이터베이스를 이용한 얼굴 영상 데이터 분류, 그리고 근전도(EMG, Electromyogram) 데이터를 분류하는 것이다. 제안한 지능시스템은 일반적인 LVQ와 비교한다. 실험을 통해 제안한 지능시스템이 일반적인 LVQ보다 패턴 인식의 정확성이 더 우수함을 알 수가 있었다.

퍼지 클러스터링 방법을 이용한 흉부 혈관의 검출에 관한 연구

  • 황준현;박광석;민병구
    • 한국지능시스템학회논문지
    • /
    • 제1권2호
    • /
    • pp.65-71
    • /
    • 1991
  • A new algorithm is proposed for the automatic detection of pulmonary blood vessels by simulating the human recognition process by the pyramid images. Large and wide vessels are detected from the most compressed level, followed by the detection of small and narrow ones from the less compressed images with FCM(fuzzy c means). As the proposed algorithm detects blood vessels orderly according to their size, there is no need to consdier the variation of parameters and the brance points which should be considered in other detection algorithms.

  • PDF

진화알고리즘을 이용한 클러스터링 알고리즘 (A Clustering Algorithm using the Genetic Algorithm)

  • 류정우;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.313-315
    • /
    • 2000
  • 클러스터링에 있어서 K-means와 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최소 해에 수렴될 문제와 사전에 클러스터 개수를 결정해야 하는 문제점을 가지고 있다. 본 논문에서는 병렬 탐색을 통해 최적 해를 찾는 진화 알고리즘을 사용하여 지역적 최소 해에 수렴되는 문제점을 개선하였으며, 클러스터의 특성을 표준편차 벡터를 계산하여 중심으로부터 포함된 데이터가 얼마나 분포되어 있는지 알 수 있는 분산도와 임의의 데이터와 모든 중심들간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터간의 간격을 알 수 있는 분리도를 정의함으로써 자동으로 클러스터 개수를 결정할 수 있게 하였다. 실험데이터와 가우시안 분포에 의해 생성된 다차원 실험데이터를 사용하여 제안한 알고리즘이 이러한 문제점들을 해결하고 있음을 보인다.

  • PDF