• Title/Summary/Keyword: FCC Array

Search Result 6, Processing Time 0.018 seconds

An Evaluation of Three Dimensional Finite Element Model on the Strength Prediction of Particles Reinforced MMCs (입자강화형 금속복합재료의 강도 예측에 관한 3차원 유한요소 모델의 평가)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.124-138
    • /
    • 1998
  • Particles reinforced MMCs have many advantages over monolithic metals including a higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance. SiC$_p$/A16061 composites have good results in its mechanical properties. This work investigates SiC$_p$/A16061 composites in the microscopic view and compares the analytical results with the experimental ones. The discrepancy of the material properties between the reinforced particle, SiC$_p$, and the matrix material, A16061 appears to be so significant. Especially the coefficient of thermal expansion(CTE) of A16061 is 5 times larger than that of SiC$_p$. Thermal residual stress in MMCs is induced at high temperatures. The shape of particle is various but the theoretical model is not able to consider the nonuniform shape. Particle distribution is not homogeneous in experimental specimen. However, it is assumed to be homogeneous in simulation model. The shapes of particles are assumed to be not only perfect global but hexahedral shapes. The types of particle distribution are two - simple cubic array(SC array) and face-centered cubic array(FCC array).

  • PDF

Three Dimensional Finite Element Analysis of Particle Reinforced Metal Matirx Composites Considering the Thermal Residual Stress and the Non-uniform Distribution of Reinforcements (금속복합재료의 열잔류 응력과 강화재의 불규칙 분산 상태를 고려한 3차원 유한 요소 해석)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.199-209
    • /
    • 2000
  • Particles reinforced MMCs have higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance than monolithic metals. But the coefficient of thermal expansion(CTE) of Al6061 is 5 times larger than that of SiCp. The discrepancy of CTE makes some residual stresses inside of MMCs. This work investigates Si$C_p$/Al6061 composites at high temperatures in the microscopic view by three-dimensional elasto-plastic finite element analyses and compares the analytical results with the experimental ones. The theoretical model is not able to consider the nonuniform shape of particle. So the shape of particle is assumed to be perfect global shape. And also particle distribution is not homogeneous in experimental specimen. It is assumed to be homogeneous in simulation model. The type of particle distribution is face-centered cubic array(FCC array). Furthermore, non-homogeneous distribution is modeled by combination of several volume fractions.

  • PDF

Gas Flow through Arrays of Spheres Coated by Liquid Film (액체 막이 입혀진 구 입자 배열을 지나는 기체 흐름)

  • Koo, Sangkyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.646-652
    • /
    • 2009
  • Present study deals with a three phase flow problem of determining drag acting on spheres wetted by liquid flow by gas flow through the spheres in simple cubic (SC), body-center cubic (BCC) and face-centered cubic (FCC) array, respectively, when the inertia of gas is negligibly small. The liquid flow driven by gravity on the spheres is assumed to be unaffected by the countercurrent gas flow. A perturbation method coupled with a multipole expansion method is used to calculate the hydrodynamic interactions between spheres and hence determine the effect of liquid film and flow on the gas flow for each periodic array of spheres. An approximate method for evaluating the effect of the liquid film is also presented for simple estimations. It is found that the approximation results are in a reasonable agreement with the numerical calculations.

Design of UWB Antenna for the External Receiver of Capsule Endoscopy (캡슐 내시경의 외부 수신기용 UWB 안테나 설계)

  • Kim Hong-Seok;Oh Min-Seok;Cheon Chang-Yul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.790-796
    • /
    • 2005
  • In order to accomplish a wireless communication of capsule endoscopy, an environment study in the human body and receiving antenna design have been performed. The proposed antenna is the loop antenna designed to minimize the propagation loss in multi-loss layer such as the human body and utilize the magnetic field. Considering the propagation loss in the human body, the frequency range is from 400 MHz to 500 MHz. Acorrrding to the FCC regulations, the permittivity and conductivity for each human tissue were extracted. We set up an equivalent model and make an aqueous solution which is replaced with the human body. Due to movement of capsule in the human body which propagation loss is extremly severe, an array antenna is required. Irrespective of the location of transmission antenna transmitting a signal of 1 mW, we confirme what it is possible for the enough signal detection as the average signal level of array antenna is -60 dBm.

Mechanical Properties of Metallic Additive Manufactured Lattice Structures according to Relative Density (상대 밀도에 따른 금속 적층 제조 격자 구조체의 기계적 특성)

  • Park, Kwang-Min;Kim, Jung-Gil;Roh, Young-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The lattice structure is attracting attention from industry because of its excellent strength and stiffness, ultra-lightweight, and energy absorption capability. Despite these advantages, widespread commercialization is limited by the difficult manufacturing processes for complex shapes. Additive manufacturing is attracting attention as an optimal technology for manufacturing lattice structures as a technology capable of fabricating complex geometric shapes. In this study, a unit cell was formed using a three-dimensional coordinate method. The relative density relational equation according to the boundary box size and strut radius of the unit cell was derived. Simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) with a controlled relative density were designed using modeling software. The accuracy of the equations for calculating the relative density proposed in this study secured 98.3%, 98.6%, and 96.2% reliability in SC, BCC, and FCC, respectively. A simulation of the lattice structure revealed an increase in compressive yield load with increasing relative density under the same cell arrangement condition. The compressive yield load decreased in the order of SC, BCC, and FCC under the same arrangement conditions. Finally, structural optimization for the compressive load of a 20 mm × 20 mm × 20 mm structure was possible by configuring the SC unit cells in a 3 × 3 × 3 array.

Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength (잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석)

  • Kang, Chung-Gil;Seo, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF