• Title/Summary/Keyword: FC-DenseNet

Search Result 6, Processing Time 0.017 seconds

Attention Gated FC-DenseNet for Extracting Crop Cultivation Area by Multispectral Satellite Imagery (다중분광밴드 위성영상의 작물재배지역 추출을 위한 Attention Gated FC-DenseNet)

  • Seong, Seon-kyeong;Mo, Jun-sang;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1061-1070
    • /
    • 2021
  • In this manuscript, we tried to improve the performance of the FC-DenseNet by applying an attention gate for the classification of cropping areas. The attention gate module could facilitate the learning of a deep learning model and improve the performance of the model by injecting of spatial/spectral weights to each feature map. Crop classification was performed in the onion and garlic regions using a proposed deep learning model in which an attention gate was added to the skip connection part of FC-DenseNet. Training data was produced using various PlanetScope satellite imagery, and preprocessing was applied to minimize the problem of imbalanced training dataset. As a result of the crop classification, it was verified that the proposed deep learning model can more effectively classify the onion and garlic regions than existing FC-DenseNet algorithm.

Assessment of the FC-DenseNet for Crop Cultivation Area Extraction by Using RapidEye Satellite Imagery (RapidEye 위성영상을 이용한 작물재배지역 추정을 위한 FC-DenseNet의 활용성 평가)

  • Seong, Seon-kyeong;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.823-833
    • /
    • 2020
  • In order to stably produce crops, there is an increasing demand for effective crop monitoring techniques in domestic agricultural areas. In this manuscript, a cultivation area extraction method by using deep learning model is developed, and then, applied to satellite imagery. Training dataset for crop cultivation areas were generated using RapidEye satellite images that include blue, green, red, red-edge, and NIR bands useful for vegetation and environmental analysis, and using this, we tried to estimate the crop cultivation area of onion and garlic by deep learning model. In order to training the model, atmospheric-corrected RapidEye satellite images were used, and then, a deep learning model using FC-DenseNet, which is one of the representative deep learning models for semantic segmentation, was created. The final crop cultivation area was determined as object-based data through combination with cadastral maps. As a result of the experiment, it was confirmed that the FC-DenseNet model learned using atmospheric-corrected training data can effectively detect crop cultivation areas.

Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages (딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지)

  • Byunghyun Yoon;Seonkyeong Seong;Jaewan Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • The remotely sensed data, such as satellite imagery and aerial photos, can be used to extract and detect some objects in the image through image interpretation and processing techniques. Significantly, the possibility for utilizing digital map updating and land monitoring has been increased through automatic object detection since spatial resolution of remotely sensed data has improved and technologies about deep learning have been developed. In this paper, we tried to extract plastic greenhouses into aerial orthophotos by using fully convolutional densely connected convolutional network (FC-DenseNet), one of the representative deep learning models for semantic segmentation. Then, a quantitative analysis of extraction results had performed. Using the farm map of the Ministry of Agriculture, Food and Rural Affairsin Korea, training data was generated by labeling plastic greenhouses into Damyang and Miryang areas. And then, FC-DenseNet was trained through a training dataset. To apply the deep learning model in the remotely sensed imagery, instance norm, which can maintain the spectral characteristics of bands, was used as normalization. In addition, optimal weights for each band were determined by adding attention modules in the deep learning model. In the experiments, it was found that a deep learning model can extract plastic greenhouses. These results can be applied to digital map updating of Farm-map and landcover maps.

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

Comparative evaluation of deep learning-based building extraction techniques using aerial images (항공영상을 이용한 딥러닝 기반 건물객체 추출 기법들의 비교평가)

  • Mo, Jun Sang;Seong, Seon Kyeong;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.157-165
    • /
    • 2021
  • Recently, as the spatial resolution of satellite and aerial images has improved, various studies using remotely sensed data with high spatial resolution have been conducted. In particular, since the building extraction is essential for creating digital thematic maps, high accuracy of building extraction result is required. In this manuscript, building extraction models were generated using SegNet, U-Net, FC-DenseNet, and HRNetV2, which are representative semantic segmentation models in deep learning techniques, and then the evaluation of building extraction results was performed. Training dataset for building extraction were generated by using aerial orthophotos including various buildings, and evaluation was conducted in three areas. First, the model performance was evaluated through the region adjacent to the training dataset. In addition, the applicability of the model was evaluated through the region different from the training dataset. As a result, the f1-score of HRNetV2 represented the best values in terms of model performance and applicability. Through this study, the possibility of creating and modifying the building layer in the digital map was confirmed.

Performance Evaluation of Deep Learning Model according to the Ratio of Cultivation Area in Training Data (훈련자료 내 재배지역의 비율에 따른 딥러닝 모델의 성능 평가)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1007-1014
    • /
    • 2022
  • Compact Advanced Satellite 500 (CAS500) can be used for various purposes, including vegetation, forestry, and agriculture fields. It is expected that it will be possible to acquire satellite images of various areas quickly. In order to use satellite images acquired through CAS500 in the agricultural field, it is necessary to develop a satellite image-based extraction technique for crop-cultivated areas.In particular, as research in the field of deep learning has become active in recent years, research on developing a deep learning model for extracting crop cultivation areas and generating training data is necessary. This manuscript classified the onion and garlic cultivation areas in Hapcheon-gun using PlanetScope satellite images and farm maps. In particular, for effective model learning, the model performance was analyzed according to the proportion of crop-cultivated areas. For the deep learning model used in the experiment, Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet) was reconstructed to fit the purpose of crop cultivation area classification and utilized. As a result of the experiment, the ratio of crop cultivation areas in the training data affected the performance of the deep learning model.