• Title/Summary/Keyword: FBG 변형률센서

Search Result 81, Processing Time 0.021 seconds

Cure Monitoring of Epoxy Resin by Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 에폭시 수지의 경화도 모니터링)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

Research on the Mechanical Strength of Fiber Bragg Grating Sensor Adapting to Railway Structure (철도 구조물 적용을 위한 FBG 센서의 기계적 강도에 관한 연구)

  • Yoon, Hyuk-Jin;Kim, Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2009
  • In order to apply FBG(Fiber Bragg Grating) sensor as one of reliable sensors in the commercial railway structure, the reliability of FBG sensor in the mechanical strength viewpoint have to be confirmed and the maximum strain should surpass the fracture strain of the host structure to measure the measurands until the host structures fail. In this paper, several factors that influence the mechanical failure strength of fiber Bragg grating sensors were analyzed. A set-up for dynamic tensile testing of optical glass fibers with fiber Bragg gratings was made. To increase the FBG failure strength, techniques relying on the H2 loading treatment and stripping methods were established and testified as a result of the tensile strength test of optical fibers.

Experimental Study for Establishment of Long-term Monitoring System using Fiber Optical Sensor for Pipeline System for Waste Transportation (광섬유센서를 이용한 쓰레기 이송관로의 장기 계측시스템 구축을 위한 실험적 연구)

  • Kim, Haeng-Bae;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.35-43
    • /
    • 2016
  • Recently, the pipeline system for waste transportation has been increasingly constructed as new solution for the waste collection and disposal system by constantly increasing domestic waste which issued as social problem. The pipeline system is constructed through long distance, so proper long-term monitoring system is necessary which available to detect the damage location for the effective maintenance. In this paper, the experimental study is carried out to evaluate the applicability of optical strain gauge sensor based on FBG for the long-term monitoring system. Three test parameters such as pressure leaking, blockage and deformation are considered as typical damages for real-scale pipeline test specimen. In order to measure flexural and volumetric strain and temperature, three FBG sensors are installed at each monitoring sections. From the test results, this study suggested effective methods of sensor installation and arrangement. Also the sensor spacing for the design of monitoring system using FBG sensor is derived by the correlation of distances from deformation between sensor responses.

Monitoring of a Steel Plate Girder Railroad Bridge with Fiber Bragg Grating Sensors (광섬유 격자센서를 이용한 철도 판형교의 증속 실험)

  • Chung, Won Seok;Kang, Dong Hoon;Choi, Eun Soo;Kim, Hyun Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.681-688
    • /
    • 2005
  • This study investigates an existing steel plate girder railroad bridge after superstructure rehabilitation to monitor static and dynamic responses using Fiber Bragg Grating (FBG) sensors. This paper also presents an experimental technique to estimate the vertical deflection of the bridge using FBG sensors. Seven FBG sensors are multiplexed in a single optical fiber and installed in parallel pairs along the length of the bridge, with one set at the top flange and the other at the bottom flange. In addition to FBG sensors, a conventional electric strain gauge and anLVDT are installed at the mid-span of the bridge for comparison. A test train consisting of one locomotive is placed at the center of the bridge to produce the maximum static effect. The train is also made to pass over the bridge at different speeds ranging from 10 km/h to 90 km/h to monitor the dynamic response of the bridge. This study demonstrates that the measured strains using the FBG sensor compared well with the readings from the electric strain gauge. The results show that the proposed instrumentation technique is capable of estimating the vertical deflection of the bridge for various loading conditions, which is crucial in structural health monitoring. Several dynamic characteristics of the bridge were also identified.

Multi-fidelity Data-fusion for Improving Strain accuracy using Optical Fiber Sensors (이종 광섬유 센서 데이터 융합을 통한 변형률 정확도 향상 기법)

  • Park, Young-Soo;Jin, Seung-Seop;Yoo, Chul-Hwan;Kim, Sungtae;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.547-553
    • /
    • 2020
  • As aging infrastructures increase along with time, the efficient maintenance becomes more significant and accurate responses from the sensors are pre-requisite. Among various responses, strain is commonly used to detect damage such as crack and fatigue. Optical fiber sensor is one of the promising sensing techniques to measure strains with high-durability, immunity for electrical noise, long transmission distance. Fiber Bragg Grating (FBG) is a point sensor to measure the strain based on reflected signals from the grating, while Brillouin Optic Correlation Domain Analysis (BOCDA) is a distributed sensor to measure the strain along with the optical fiber based on scattering signals. Although the FBG provides the signal with high accuracy and reproducibility, the number of sensing points is limited. On the other hand, the BOCDA can measure a quasi-continuous strain along with the optical fiber. However, the measured signals from BOCDA have low accuracy and reproducibility. This paper proposed a multi-fidelity data-fusion method based on Gaussian Process Regression to improve the fidelity of the strain distribution by fusing the advantages of both systems. The proposed method was evaluated by laboratory test. The result shows that the proposed method is promising to improve the fidelity of the strain.

Measurement of Transverse Strain Using Polarization Maintaining Fiber Bragg Grating Sensor (편광 유지 광섬유 브래그 격자 센서를 이용한 횡방향 변형률 측정)

  • Yoon, Hyuk-Jin;Kim, Dae-Hyun;Hong, Chang-Sun;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.30-35
    • /
    • 2003
  • In this paper, the transverse strain was measured using polarization maintaining fiber Bragg grating(PMFBG) sensor. PMFBG sensor was fabricated using phase mask and Excidmer laser. The reflected wavelength of PMFBG sensor had dual peaks due to intrinsic birefringence. To find the polarization axes, peak sensitivity was measured under compression test. The signal characteristics of PMFBG sensor were also examined in embedding condition. The embedded PMFBG sensor in epoxy block was loaded for the transverse strain measurement, The wavelength-swept fiber laser(WSFL) was used to construct the PMFBG sensor system. Experiments showed that the PMFBG sensor could successfully measure the transverse strain.

Intensity-modulated Multiplexing of FBG Sensors (광 세기 변조 다중화 된 브래그 격자 센서)

  • 서정민;이정주;권일범
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.324-325
    • /
    • 2003
  • 광섬유 브래그 격자 센서(Fiber Brags Grating Sensor: FBG Sensor)는 여타 광섬유 센서와 같이 가볍고 저렴하며 주위의 전자기적 잡음에 무관한 장점과 더불어 측정대상이 반사광의 파장변화이므로, 광섬유 연결부나 실험장치들에 의해 생기는 광 손실이나 잡음에 대해서 강인한 측정을 할 수 있다. 그리고 파장변화가 변형률이나 온도변화에 선형적으로 나타나므로, 센서로서 많은 연구가 진행되고 있다. 특히, 구조물의 내부에 삽입하여 구조물 스스로 외부의 환경변화를 감지하여 필요한 동작을 수행하는 지능형 구조물(Smart Structure)에 적합한데, 이를 위해선 구조물의 여러 지점을 측정해야 하므로, 브래그 격자 여러개를 한 시스템에서 사용하는 다중화(Multiplexing)가 필수적이다. (중략)

  • PDF

Tension Monitoring of Prototype Smart Anchor for Geotechnical Disaster Prevention (지반방재용 스마트 앵커의 장력측정 및 하중전이 측정)

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Jae-Min
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • 흙막이 굴착 및 절취사면의 보강공법으로 많이 적용되고 있는 앵커의 장력을 측정하는 전기저항식 로드셀과 스트레인게이지, 바이브레이팅 와이어 (vibrating wire) 타입의 모니터링 방법은 안전관리를 위한 장기적인 모니터링에 한계를 가지고 있어 이를 개선할 수 있는 방안으로 광섬유 센서를 이용하여 강연선의 변형률을 측정할 수 있는 스마트 텐던이 개발되었다(김재민 등, 2007). 앵커를 구성하는 7연 강연선(텐던)의 중앙케이블에 삽입된 광섬유브래그격자(Fiber Bragg Grating ; FBG)센서는 기존 스트레인게이지 타입에 비해 크기가 작고 내구성이 우수하며 전자기파에 의한 노이즈 발생이 없고 하나의 리드선으로 다중점 측정(multiplexing)이 가능하여 장기모니터링에 효과적인 장점이 있다. 본 연구에서는 FBG센서를 내장한 스마트 텐던을 실대형(Prototype) 앵커(L=11.5m)에 적용하여 현장 인발실험에 의해 시공중 장력 모니터링을 수행하고 로드셀 측정결과와 비교하였고 정착부에 설치된 FBG 센서로부터 앵커의 하중전이 계측을 수행하였다.

  • PDF

Technical review of discrimination method between strain and temperature on the FBG sensor (FBG 센서의 온도와 변형률 동시 측정기법 기술 분석)

  • Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.574-583
    • /
    • 2008
  • FBG(Fiber Bragg grating)s have shown a great potential for sensing applications, and are easily embedded in materials with a negligible impact on the mechanical properties of the host. However, the use of FBG sensors is limited by their simultaneous dependence on strain and temperature, thus only one parameter can be determined from a single grating. This paper reviews various methods to discriminate between strain and temperature effects. To overcome this cross sensitivity using only embedded optical fibers, a number of techniques have been proposed, most of them relying on the deconvolution of two simultaneous measurements.

  • PDF

A Methodology for Monitoring Prestressed Force of Bridges Using OFS-embedded Stand (광섬유센서가 내장된 강연선을 이용한 교량의 장력 모니터링 방법)

  • Kim, Jae-Min;Kim, Hyun-Woo;Kim, Young-Sang;Kim, Jin-Won;Yun, Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.287-294
    • /
    • 2008
  • This study proposes a novel method for in service evaluation of tension force of a prestressed 7-wire strand which is frequently employed for retrofitting bridge superstructure. The smart strand is made by replacing the straight king wire of the strand with an instrumented steel tube in which the FBG sensor is embedded. Since the strain of the smart strand can easily be measured using the sensor, it is possible to monitor tension force of the strand during the service. For the sake of demonstrating effectiveness of the proposed strand, we came up with a 7.0m long prototype with 2 FBG sensors, and it is applied as an external tendon to a 6.4m long and 0.6 high RC T-shaped beam. A loading-unloading test has been carried out, and estimated tension forces using the smart strand are compared with measured forces by load cell. The comparison showed that the proposed smart tendon is useful and accurate for monitering tension force of the prestressed tendon.