• Title/Summary/Keyword: FAST Corner Detection

Search Result 18, Processing Time 0.02 seconds

Extracting the K-most Critical Paths in Multi-corner Multi-mode for Fast Static Timing Analysis

  • Oh, Deok-Keun;Jin, Myeoung-Woo;Kim, Ju-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.771-780
    • /
    • 2016
  • Detecting a set of longest paths is one of the crucial steps in static timing analysis and optimization. Recently, the process variation during manufacturing affects performance of the circuit design due to nanometer feature size. Measuring the performance of a circuit prior to its fabrication requires a considerable amount of computation time because it requires multi-corner and multi-mode analysis with process variations. An efficient algorithm of detecting the K-most critical paths in multi-corner multi-mode static timing analysis (MCMM STA) is proposed in this paper. The ISCAS'85 benchmark suite using a 32 nm technology is applied to verify the proposed method. The proposed K-most critical paths detection method reduces about 25% of computation time on average.

Implementation of augmented reality using parallel structure (병렬구조를 이용한 증강현실 구현)

  • Park, Tae-Ryong;Heo, Hoon;Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.371-377
    • /
    • 2013
  • This thesis propose an efficient parallel structure method for implementing a FAST and BRIEF algorithm based Augmented Reality. SURF algorithm that is well known in the object recognition algorithms is robust in object recognition. However, there is a disadvantage for real time operation because, SURF implementation requires a lot of computation. Therefore, we used a FAST and BRIEF algorithm for object recognition, and we improved Conventional Parallel Structure based on OpenMP Library. As a result, it achieves a 70%~100% improvement in execution time on the embedded system.

Vision Inspection and Correction for DDI Protective Film Attachment

  • Kang, Jin-Su;Kim, Sung-Soo;Lee, Yong-Hwan;Kim, Young-Hyung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.153-166
    • /
    • 2020
  • DDI(Display Driver IC) are used to drive numerous pixels that make up display. For stable driving of DDI, it is necessary to attach a protective film to shield electromagnetic waves. When the protective film is attached, defects often occur if the film is inclined or the center point is not aligned. In order to minimize such defects, an algorithm for correcting the center point and the inclined angle using camera image information is required. This technology detects the corner coordinates of the protective film by image processing in order to correct the positional defects where the protective film is attached. Corner point coordinates are detected using an algorithm, and center point position finds and correction values are calculated using the detected coordinates. LUT (Lookup Table) is used to quickly find out whether the angle is inclined or not. These algorithms were described by Verilog HDL. The method using the existing software requires a memory to store the entire image after processing one image. Since the method proposed in this paper is a method of scanning by adding a line buffer in one scan, it is possible to scan even if only a part of the image is saved after processing one image. Compared to those written in software language, the execution time is shortened, the speed is very fast, and the error is relatively small.

Study of the Haar Wavelet Feature Detector for Image Retrieval (이미지 검색을 위한 Haar 웨이블릿 특징 검출자에 대한 연구)

  • Peng, Shao-Hu;Kim, Hyun-Soo;Muzzammil, Khairul;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.160-170
    • /
    • 2010
  • This paper proposes a Haar Wavelet Feature Detector (HWFD) based on the Haar wavelet transform and average box filter. By decomposing the original image using the Haar wavelet transform, the proposed detector obtains the variance information of the image, making it possible to extract more distinctive features from the original image. For detection of interest points that represent the regions whose variance is the highest among their neighbor regions, we apply the average box filter to evaluate the local variance information and use the integral image technique for fast computation. Due to utilization of the Haar wavelet transform and the average box filter, the proposed detector is robust to illumination change, scale change, and rotation of the image. Experimental results show that even though the proposed method detects fewer interest points, it achieves higher repeatability, higher efficiency and higher matching accuracy compared with the DoG detector and Harris corner detector.

Fast block error detection method in video using a corner information and Adaboost recognition technology (코너 정보와 Adaboost 인식 기술을 이용한 비디오 내의 블록 오류 고속 검출 방법)

  • Ha, Myunghwan;Lee, Moonsik;Park, Sungchoon;Ahn, Kiok;Kim, Min-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.58-61
    • /
    • 2011
  • 방송 콘텐츠 제작에는 카메라, VCR, NLE, 인코더 등의 장비가 사용되고 있으며, VCR 헤더 불량, 테이프 노후화/보관불량, NLE 편집 오류, 인코더 장비 불량 등의 다양한 이유로 콘텐츠에 예기치 않은 비디오 및 오디오 오류가 발생할 수 있다. 이러한 문제점을 해결하기 위하여 콘텐츠에 포함된 다양한 비디오 및 오디오 오류를 자동으로 검사할 수 있는 자동 검사 시스템이 요구된다. 본 논문에서는 이러한 다양한 오류를 자동으로 검사할 수 있는 방법 중 특히 비디오 내에 종종 포함되는 블록 오류를 대상으로 하는 고속 오류 검출 방법을 설명한다. 제안한 방법은 비디오 내의 매 프레임의 코너 수를 계산하고, 시간 증가에 따른 코너 수의 변화량을 검사하여 블록 오류가 포함될 것으로 예상되는 후보 프레임을 찾는 1단계 과정과, 후보 프레임을 대상으로 Adaboost 인식 기술을 사용하여 학습한 분류기를 통해 최종 블록 오류가 포함된 프레임을 검출하는 2단계 과정으로 구성된다. 시스템 구현 실험 결과, 비디오 내에 포함된 블록 오류를 프레임 단위로 정확하게 고속 검출 하는 것이 가능함을 확인하였다. SD급의 경우 실시간 대비 2.3배속 가량의 고속 검사가 가능하고 HD의 경우에도 0.8배속 수준의 고속 검사가 가능하였다.

  • PDF

Lane Violation Detection System Using Feature Tracking (특징점 추적을 이용한 끼어들기 위반차량 검지 시스템)

  • Lee, Hee-Sin;Lee, Joon-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.36-44
    • /
    • 2009
  • In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorithm in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. In the stage of feature extraction, the feature is extracted from the inputted image by sing the feature-extraction algorithm available for the real-time processing. The extracted features are again selected the racking-targeted feature. The registered feature is tracked by using NCC(normalized cross correlation). Finally, whether or not lane violation is finally detected by using information on the tracked features. As a result of experimenting the suggested system by using the acquired image in the section with a ban on intervention, the excellent performance was shown with 99.09% for positive recognition ratio and 0.9% for error ratio. The fast processing speed could be obtained in 34.48 frames per second available for real-time processing.

  • PDF

Robust Semi-auto Calibration Method for Various Cameras and Illumination Changes (다양한 카메라와 조명의 변화에 강건한 반자동 카메라 캘리브레이션 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Recently, many 3D contents have been produced through the multiview camera system. In this system, since a difference of the viewpoint between color and depth cameras is inevitable, the camera parameter plays the important role to adjust the viewpoint as a preprocessing step. The conventional camera calibration method is inconvenient to users since we need to choose pattern features manually after capturing a planar chessboard with various poses. Therefore, we propose a semi-auto camera calibration method using a circular sampling and an homography estimation. Firstly, The proposed method extracts the candidates of the pattern features from the images by FAST corner detector. Next, we reduce the amount of the candidates by the circular sampling and obtain the complete point cloud by the homography estimation. Lastly, we compute the accurate position having the sub-pixel accuracy of the pattern features by the approximation of the hyper parabola surface. We investigated which factor affects the result of the pattern feature detection at each step. Compared to the conventional method, we found the proposed method released the inconvenience of the manual operation but maintained the accuracy of the camera parameters.

Real-Time Feature Point Matching Using Local Descriptor Derived by Zernike Moments (저니키 모멘트 기반 지역 서술자를 이용한 실시간 특징점 정합)

  • Hwang, Sun-Kyoo;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.116-123
    • /
    • 2009
  • Feature point matching, which is finding the corresponding points from two images with different viewpoint, has been used in various vision-based applications and the demand for the real-time operation of the matching is increasing these days. This paper presents a real-time feature point matching method by using a local descriptor derived by Zernike moments. From an input image, we find a set of feature points by using an existing fast corner detection algorithm and compute a local descriptor derived by Zernike moments at each feature point. The local descriptor based on Zernike moments represents the properties of the image patch around the feature points efficiently and is robust to rotation and illumination changes. In order to speed up the computation of Zernike moments, we compute the Zernike basis functions with fixed size in advance and store them in lookup tables. The initial matching results are acquired by an Approximate Nearest Neighbor (ANN) method and false matchings are eliminated by a RANSAC algorithm. In the experiments we confirmed that the proposed method matches the feature points in images with various transformations in real-time and outperforms existing methods.