• 제목/요약/키워드: FAN

검색결과 3,629건 처리시간 0.033초

축류형 Fan Stall Warning System 개발 (Development of Axial Fan Stall Warning System)

  • 조현섭;장기성;박왈서
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2434-2436
    • /
    • 2001
  • 500MW급 대용량 보일러 통풍계통의 Fan Stall 감시장치는 Fan 이상 발생시 Fan을 보호하기 위하여 정지시키는 기능을 한다. 그러나 Fan Stall 감시장치의 빈번한 고장으로 신뢰성이 저하되고 운전에 영향을 미치므로 이것을 DCS Logic으로 구성하여 신뢰성을 향상시켰다.

  • PDF

굴삭기 냉각팬 성능해석 및 슈라우드 특성에 대한 실험적 연구 (Experimental Study of Cooling Fan Performance Analysis and Shroud Characteristics for an Excavator)

  • 이재석;정경남;김진영;이태경;강정원;심재구;손득균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2597-2602
    • /
    • 2007
  • In this paper, the performance analysis is experimentally carried out in order to select the best cooling fan and shroud considering both cooling performance and noise reduction. 4 cooling fans have been tested in the fan tester and the real excavator. In order to obtain the performance of the cooling fans, flow capacity has been estimated by measuring flow velocity using a hot wire anemometer, and noise radiation has been also measured to estimate the fan noise. Characteristics of a box-type and a streamlined shroud have been examined by changing the immersion depth of cooling fans. Based upon the results, the best cooling fan is selected. Finally, the criterion to select the best cooling fan has been set up.

  • PDF

Crossflow Fan 주변의 유동 (Flows around crossflow fan)

  • 김재원;정윤영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.678-683
    • /
    • 2001
  • The present work has carried out experimental study on a cross-flow fan system with a simplified vortex wall scroll casing. A cross-flow fan test rig was constructed to obtain pressure rise and volume flow rate for various fan operating conditions. The performance estimation is using a wind tunnel with a motor driven damper for flow rate control and flows are quantitatively visualized by light scattering system with a pulsed laser. Min focus on the visualization is finding a eccentric vortex inside a fan which is a major factor reducing fan efficiency. Comprehensive engineering data are prepared for industrial applications and show a good agreement with a prior work by experimental measurements.

  • PDF

공기조화 및 냉각시스템의 팬 소음예측 기법 (Fan Noise Prediction Method of Air Conditioning and Cooling System)

  • 이진영;이찬;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1318-1320
    • /
    • 2007
  • Fan noise prediction method is presented for air conditioning and/or cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(Flow Network Modeling) with the flow resistances for flow elements of the system. Based on the fan operation point predicted from the FNM analysis results, the present fan noise model predicts overall sound power, pressure levels and spectrum. The predictions of the flow distribution, the fan operation and the noise level in electronic system by the present method are well agreed with 3-D CFD and actual noise test results.

  • PDF

공기 냉각 시스템의 홴 소음 예측 기법 (Fan Noise Prediction Method of Air Cooling System)

  • 이찬;길현권
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.

실내 급.배기구 위치변화에 따른 실 공기유동에 관한 연구 (A Study on the Indoor Airflow Pattern by Changing the Location of Mechanical Terminal Unit)

  • 최정민;조성우
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.193-200
    • /
    • 2009
  • The ventilation system of apartments can be divided by supply and exhaust fan, supply fan and exhaust free and supply free and exhaust fan. Recently, the individual ventilation system and central ventilation system which is combined cooling system with duct system are applied to apartment ventilation system. The airflow pattern is affected by location of supply unit and exhaust unit in indoor. This study is to investigate the proper distance between supply unit and exhaust unit using CFD. As a result of this study, the proper distance between supply unit and exhaust unit could be suggested at the interval of 3 m in supply and exhaust fan system and 2.5 m in supply fan and exhaust free.

시스템 전자 냉각 팬의 선정 및 소음 평가 기법 (Selection and Noise Evaluation Methods of the System Electronic Cooling Fan)

  • 이찬;윤재호;권오경
    • 한국유체기계학회 논문집
    • /
    • 제10권3호
    • /
    • pp.33-38
    • /
    • 2007
  • Fan selection procedure and fan noise evaluation method are presented for the system electronic cooling by combining FNM(Flow Network Model) and fan noise correlation model. Internal flow paths and distribution in electronic system we analyzed by using the FNM with the flow resistances for flow elements of the system. Based on the fan operation point predicted from the FNM analysis results, the present fan noise model predicts overall sound power, pressure levels and spectrum. The predictions of the flow distribution, the fan operation and the noise level in electronic system by the present method are well agreed with 3-D CFD and actual test results.

축류형 송풍기 설계 과정에서 공력-음향학적 성능 예측을 위한 전산 프로그램의 개발 (Development of the Computer Program for Predicting the Aero-acoustic Performance in the Design Process of Axial Flow Fan)

  • 정동규;홍순성;이찬
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.91-98
    • /
    • 2000
  • Developed is a computer program for the prediction of the aero-acoustic performance characteristics such as discharge pressure, efficiency, power and noise level in the basic design step of axial flow fan. The flow field and the aerodynamic performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted aerodynamic performances, sound pressure level and noise directivity patterns of fan by the present computer program are favorably compared with the test data of actual fan. Furthermore, the present computer program is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level and in analyzing their design sensitivities.

  • PDF

공력음향학적 특성을 고려한 시로코 팬의 설계 방법 (Design Method of the Sirocco Fan Considering Aeroacoustic Performance Characteristics)

  • 이찬
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.59-64
    • /
    • 2010
  • A design method of Sirocco fan is developed for constructing 3-D impeller and scroll geometries, and for predicting both the aerodynamic performance and the noise characteristics of the designed fan. The aerodynamic blading design of fan is conducted by blade angle, camber line determinations and airfoil thickness distribution, and then the scroll geometry of fan is designed by using logarithmic spiral. The aerodynamic performance of designed fan is predicted by the meanline analysis with flow blockage, slip and pressure loss correlations. Based on the predicted performance data, fan noise is predicted by two models for cutoff frequency and broadband noise sources. The present predictions for the performance and the noise level of actual fans are well agreed with measurement results.

원심송풍기 볼류트 케이싱 형상에 따른 내부유동장 평가 (Flow Analysis on the Different Volute Casing in a Centrifugal Fan)

  • 장춘만
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.381-385
    • /
    • 2009
  • This paper describes performance characteristics of a centrifugal fan having a different volute casing. The centrifugal fan has a backward blade type, and is used in a refuse collecting system. The flow characteristics inside the components are analyzed by three-dimensional Navier-Stokes analysis, and also compared to the results by experiments. Distributions of pressure and efficiency obtained by numerical simulation has a good agreement with the experimental results. Throughout the numerical simulation of the centrifugal fan, a fan efficiency is increased by decreasing local losses in the blade passage. It is found that the fan efficiency is enhanced by decreasing the distance between the shroud of a impeller and casing. Detailed flow analysis is also analyzed and discussed using the results obtained by numerical simulation.

  • PDF