• Title/Summary/Keyword: FA(Fly ash)

Search Result 260, Processing Time 0.029 seconds

Super Retarding Agent Affecting Setting Time of Concrete Using Mineral Admixture (혼화재를 사용한 콘크리트의 응결 시간에 미치는 초지연제의 영향)

  • Jeon Chung Keun;Kim Jong;Han Min Cheol;Shin Dong An;Oh Sean Kyo;Han Chean Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.643-646
    • /
    • 2005
  • This paper reports the influence of super retarding agent(SRA) on the setting time of concrete incorporating mineral admixture including fly ash(FA), expansive additive(EA), silica fume(SF), blast furnace slag(BS) and blast furnace slag along with fly ash(BS+FA). An increase in SRA resulted in retarding the setting time of control concrete, while the use of mineral admixture led to a delay of setting time markedly, compared with that of control concrete under no SRA content. Meanwhile, An increase in SRA in concrete with mineral admixture exhibited comparable setting delay with control concrete. Furthermore, in case of the use of BS and SF, acceleration of setting time was observed with increase of SRA content. It is considered that proper dosage of SRA of concrete with SF and BS to secure similar setting delay with control concrete require rather larger than that of control concrete. Accordingly, For concrete with mineral admixture, in order to decide the proper dosage of SRA, application of correction factors is needed.

  • PDF

A Study on the Choice of Optimal Mixtures and Sensibility Properties of High Strength Concrete and Mass Concrete to apply the High Rising Building (초고층구조물에 적용하기 위한 고강도콘크리트 및 매스콘크리트의 최적배합선정 및 민감도특성에 관한 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Kim, Eul-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.153-159
    • /
    • 2005
  • This study is to choose the optimal mixture and to analyze the sensibility properties of High strength concrete and mass concrete to apply the high rising building. The main experimental variables were water/binder ratio $39\%,\;33\%,\;35\%\;and\;37\%$, replacement ratio of fly ash $5\%,\;10\%\;and\;15\%$, in the high strength concrete and water/binder ratio $39\%,\;41\%\;and\;43\%$, replacement ratio of fly ash $10\%,\;20\%\;and\;30\%$, in the man concrete. According to the test results, the principal conclusions are summarized as follows. 1) The slump(or slump flow) and air content of fresh concrete were found to be the highest in the elapsed time 30 minutes. 2) The optimal mixture conditions are W/B $40\%$, FA $25\%$ in the mass concrete and W/B $33.4\%$, FA $15\%$ in the high strength concrete. 3) The ranges of sensibility are satisfied in the moisture content ${\pm}l\%\;and\;S/a\;{\pm}2\%$.

Use of multi-hybrid machine learning and deep artificial intelligence in the prediction of compressive strength of concrete containing admixtures

  • Jian, Guo;Wen, Sun;Wei, Li
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.11-23
    • /
    • 2022
  • Conventional concrete needs some improvement in the mechanical properties, which can be obtained by different admixtures. However, making concrete samples costume always time and money. In this paper, different types of hybrid algorithms are applied to develop predictive models for forecasting compressive strength (CS) of concretes containing metakaolin (MK) and fly ash (FA). In this regard, three different algorithms have been used, namely multilayer perceptron (MLP), radial basis function (RBF), and support vector machine (SVR), to predict CS of concretes by considering most influencers input variables. These algorithms integrated with the grey wolf optimization (GWO) algorithm to increase the model's accuracy in predicting (GWMLP, GWRBF, and GWSVR). The proposed MLP models were implemented and evaluated in three different layers, wherein each layer, GWO, fitted the best neuron number of the hidden layer. Correspondingly, the key parameters of the SVR model are identified using the GWO method. Also, the optimization algorithm determines the hidden neurons' number and the spread value to set the RBF structure. The results show that the developed models all provide accurate predictions of the CS of concrete incorporating MK and FA with R2 larger than 0.9972 and 0.9976 in the learning and testing stage, respectively. Regarding GWMLP models, the GWMLP1 model outperforms other GWMLP networks. All in all, GWSVR has the worst performance with the lowest indices, while the highest score belongs to GWRBF.

Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis (장기재령 FA 콘크리트에 대한 염화물 거동 및 확률론적 염해 내구수명 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • In this study, accelerated chloride diffusion tests were performed on OPC(Ordinary Portland Cement) and FA(Fly Ash) concrete considering three levels o f W/B(Water to Binder) ratio o n 1,095 curing days. The accelerated chloride diffusion coefficient and the passed charge were evaluated in accordance with Tang's method and ASTM C 1202, and the resistance performance to chloride attack improved over time. FA concrete showed excellent resistance performance against chloride penetration with help of pozzolanic reaction. As the result of the passed charge, FA concrete showed durability improvement, "low" grade to "very low" grade, but OPC concrete changed "moderate" grade to "low" grade at 1,095 curing days. After assuming the design variables used for durability design as normal distribution functions, the service life of each case was evaluated by the probabilistic analysis method based on MCS(Monte Carlo Simulation). In FA concrete, the increase of probability of durability failure was lower than that of OPC concrete with increasing time, because the time-dependent coefficient of FA concrete was up to 3.2 times higher than OPC concrete. In addition, the service life by probabilistic analysis was evaluated lower than the service life by deterministic analysis, since the target probability of durability failure was set to 10%. It is considered that more economical durability design will be possible if the mo re suitable target probability of durability failure is set for various structures through researches on actual conditions and indoor tests under various circumstances.

A Fundamental Study for Development of Corrosion Inhibitor Repair Mortar (저탄소 방청 보수모르타르 개발을 위한 기초연구)

  • Jung, Jae-Eun;Yang, Keun-Hyeok;Go, Jeung-Wan;Yun, In-Gu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 2014
  • The present study prepared 13 mixes to examine fundamental mixture proportions of corrosion inhibitor repair mortars. The mortar mixes were classified into three groups according to the selected test variables which are the substitution level of polymer for Group 1, ground granulated blast-furnace slag (GGBS) and fly ash (FA) for Group 2, and corrosion inhibitor for Group 3. Based on the test results, the optimum substitution levels of GGBS and FA could be recommended as 10% and 20%, respectively, though 1-day strength of mortar significantly decreased with their substitution. Furthermore, the appropriate substitution level of corrosion inhibitor was considered to be less than 1.5%. The flexural strength of mortar tested was higher than the predictions obtained from ACI 318-11 equation. The shrinkage strain of mortar was also conservative after an age of around 10 days compared with the predictions of ACI 209.

Effect of Acidic Leachate on the Cement-based Landfill Soil Liner System (고화토차수층에 대한 산성침출수의 영향과 대책방안 - 산업부산물(고로슬래그, 플라이애쉬) 재활용 방안 중심으로 -)

  • Cho, Jae-Beom;Hyun, Jae-Hyuk;Lee, Jong-Deuk;Park, Joung-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.265-269
    • /
    • 2006
  • This study was to investigate the effect of acidic leachate on the landfill liner system and healing of cracks by using industrial by-products; BFS(Blast Furnace Slag) and FA(Fly Ash). From the results of pH measurement, for OPC(Ordinary Portland Cement) and DM(Dredged Mud) mixtures immersed acidic leachate, the initial pH($4.5{\sim}5.5$) was heavily increased to approximately 10 after 60 days experiment due to the production of 2 mole $OH^-$ which was occurred by hydrolysis of CaO and MgO etc.. Meanwhile, the initial pH of acidic leachate immersed DM mixtures with BFS and FA respectively was lasted for longer period as compared to the comparison. The reason was that production of low Ca C-S-H hydrates which stabilized in acidic liquid. The physical properties(compressive strength, hydraulic conductivity) of DM mixtures added BFS and FA was improved. It was concluded that the dissolution of hydrates was disturbed by high alkalinity of BFS and FA.

An Experimental Study on the Pore Structure Property of Concrete by Carbonation (탄산화 작용에 따른 콘크리트의 세공구조 성상에 관한 실험적 연구)

  • Kim, Young-Bong;Kim, Young-Sun;Lee, Eui-Bae;Na, Chul-Sung;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.537-540
    • /
    • 2008
  • Up to now, the RC structures have been recognized as being socially semi-permanent. But in recent years there were reports about the cases of early deterioration of RC structures. Most of all pore structure effects on the durability of concrete as well as mechanical properties of concrete. Therefore, in this study, mixing design was proportioned with the water-binder ratio 0.55 binder compositions corresponding to cement without any supplementary materials(OPC), cement with 50% blast-furnace slag replacement (BFS50), cement with 15% fly ash replacement (FA15), and ternary cement with cement, 15% fly ash, and 35% slag replacement (BFS35+FA15). And this study is to compare pore structure property of concrete by carbonation to investigate the effect of the permeation of deterioration factors such as $CO_2$ and chloride ion under the combined deterioration environments. The results showed that pore volume effects on the diffusibility of chloride ion.

  • PDF

Influence of Various Replacing Ratios of SCMs on Properties of High Fluidity Concrete (광물질 혼화재의 치환율 변화가 고유동 콘크리트의 특성에 미치는 영향)

  • Han, In-Deok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.165-172
    • /
    • 2019
  • The aim of the research is to evaluate the influence of various replacing ratios of supplementary cementitious materials(SCMs) such as fly ash(FA), blast furnace slag(BS), and both FA and BS on general properties including segregation resistance as a powder based high fluidity concrete of normal strength grade with water-to-cement ratio 0.40. Specifically, by replacing the SCMs with low density powders, it was assessed that the decreased segregation resistance due to the decreased viscosity by J-ring test. As a result of the experiment, from the general test, the mixtures with SCMs showed increased segregation resistance by increased viscosity as the references, while some segregation was shown from J-ring test due to the decreased density of fresh state mixture related with the capacity of delivering coarse aggregate.

Plastic viscosity based mix design of self-compacting concrete with crushed rock fines

  • Kalyana Rama, JS;Sivakumar, MVN;Vasan, A;Kubair, Sai;Ramachandra Murthy, A
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.461-468
    • /
    • 2017
  • With the increasing demand in the production of concrete, there is a need for adopting a feasible, economical and sustainable technique to fulfill practical requirements. Self-Compacting Concrete (SCC) is one such technique which addresses the concrete industry in providing eco-friendly and cost effective concrete. The objective of the present study is to develop a mix design for SCC with Crushed Rock Fines (CRF) as fine aggregate based on the plastic viscosity of the mix and validate the same for its fresh and hardened properties. Effect of plastic viscosity on the fresh and hardened properties of SCC is also addressed in the present study. SCC mixes are made with binary and ternary blends of Fly Ash (FA) and Ground Granulated Blast Slag (GGBS) with varying percentages as a partial replacement to Ordinary Portland Cement (OPC). The proposed mix design is validated successfully with the experimental investigations. The results obtained, indicated that the fresh properties are best achieved for SCC mix with ternary blend followed by binary blend with GGBS, Fly Ash and mix with pure OPC. It is also observed that the replacement of sand with 100% CRF resulted in a workable and cohesive mix.

A Study on the Compressive Strength and Drying Shrinkage of Concrete Depending on Mineral Admixture Kinds (혼화재 치환 콘크리트의 압축강도 및 건조수축에 관한 연구)

  • Joo Eun-Hi;Shon Myoung-Soo;Jeon Hyun-Kyu;Cha Cheon-Soo;Kim Seong-Soo;Han Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.253-256
    • /
    • 2005
  • This paper is to investigate the mixture proportion, compressive strength and drying. shrinkage of concrete depending on mineral admixtures such as fly ash (FA), blast furnace slag (BS) and cement kiln dust (CKD) under various contents of admixtures. The use of CKD had little effect on strength development at 3 days, while the use of FA and BS lead to similar compressive strength compared with that of control concrete. Concrete with CKD exhibited a reduction of compressive strength at 91 days, meanwhile concrete with FA and BS had a increase compared with that of control concrete. Drying shrinkage of concrete depending on CKD and BS increase compared with that of control concrete about $10\∼20\%$, while the use of FA exhibited reduce compared with that of control concrete about $10\∼15\%$.

  • PDF