• Title/Summary/Keyword: F-pole

Search Result 83, Processing Time 0.028 seconds

A Study on Fault Model end Performance Evaluation under Power Switch Open Fault in an Inverter-Driven Permanent Magnets Synchronous Motor (영구자석 동기전동기 구동 인버터 스위치의 개방 고장에 의한 제어 특성해석 및 고장모델 연구)

  • Kim, Kyeong-Hwa;Choi, Dong-Uk;Gu, Bon-Gwan;Jung, In-Soung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.40-51
    • /
    • 2009
  • To analyze influences under open faults in switching devices of the PWM inverter and under the isolation between the inverter and motor terminal, a faulty model for the inverter-driven permanent magnet synchronous motor is presented. Even though the conventional dq motor model obtained through the transformation of phase voltage model is widely used to analyze and control AC motor, it can not be used under open faults in switching devices since the 3-phase balanced condition is no longer hold under the open fault and it is not easy to obtain motor input voltages in open phase from the pole voltage. To deal with this problem, a faulty model for an inverter-driven permanent magnet synchronous motor is derived by using the line voltage of motor according to switch open, which can be effectively used for performance evaluation of the diagnostic algorithm. The validity of the proposed faulty model is verified through comparative simulations and experiments using DSP TMS320F28335.

Texture Transformations and Its Role on the Yield Strength of ($\alpha$+$\beta$) Heat Treated Zircaloy-4 (($\alpha$+$\beta$) 열처리된 지르칼로이-4에서 집합조직의 변화와 그 조직이 항복 강도에 미치는 영향)

  • Yoo, Jong-Sung;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.75-85
    • /
    • 1992
  • The texture changes and their effect on the 0.2% yield strength of Zircaloy-4 sheet were examined after quenched from the ($\alpha$+$\beta$) phase temperature. When the prior ($\alpha$+$\beta$) gram size was slightly larger than that of the $\alpha$-annealed, the observed texture was similar to the $\alpha$-annealed texture having an ideal orientation of the (0001) basal pole at 30$^{\circ}$away from the normal direction toward the transverse direction. When the prior ($\alpha$+$\beta$) grain size was twice as large as that of the $\alpha$-annealed, the location of maximum basal pole intensity was distributed between the transverse and the rolling direction making an angle 15$^{\circ}$from the normal direction, and the observed texture became isotropic. It was found that the Kearns texture parameter, fr, in the rolling direction increased steadily, and fr in the transverse direction increased slightly, while fr in the the normal direction decreased with increasing heat treatment time. With a small increase in fr, the 0.2% yield strength increased drastically. The influence of texture was analyzed by deriving the Schmid orientation factors and the resolved shear stresses for the deformation systems. It was found that the large increase in the 0.2% yield strength was attributed mainly to the microstructural changes and partly to the texture changes by the ($\alpha$+$\beta$) heat treatment.

  • PDF

Design of Triangular-Patch Type Low Pass Filter (삼각패치형 저역 통과 여파기의 구현)

  • Oh, Song-Yi;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.355-360
    • /
    • 2012
  • In this paper, an stepped-impedance low pass filter(SI-LPF) of triangular-patch type is proposed. A SI-LPF designed according to the standard SI-LPF design procedure is folded as a right angled triangle. The figure of merits of this structure are the adjustabilities of the cut off frequency, the stopband and the attenuation pole frequency of the proposed LPF by varying the resultant slots after folding the SI-LPF compactly for miniaturization. The size of the fabricated LPF is $13.75mm{\times}6.875mm$, which is 24.4 % reduced one compared to that of the conventional SI-LPF. The measured results of the LPF show return loss of less than -10 dB at passband, insertion loss of less than -10 dB at stopband and wide stopband from 3.5 GHz to 10 GHz (about $3f_c$).

Induction Motor Bearing Damage Detection Using Stator Current Monitoring (고정자전류 모니터링에 의한 유도전동기 베어링고장 검출에 관한 연구)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.36-45
    • /
    • 2005
  • This paper addresses the application of motor current spectral analysis for the detection of rolling-element bearing damage in induction machines. We set the experimental test bed. They is composed of the normal condition bearing system, the abnormal rolling-element bearing system of 2 type induction motors with shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. We have developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT(Fast Fourier Transform), Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. Especially, the analyzed results by inner product clearly illustrate that the stator signature analysis can be used to identify the presence of a bearing fault.

Structural Capacity of Poles Using Crack Self-healing Concrete (균열자기치유용 콘크리트를 사용한 전주의 구조 성능)

  • Yoo, Sung-Won;Kim, Sang-Jun;Park, Hong-Gi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.222-227
    • /
    • 2018
  • Recently, due to the deterioration and various natural disasters caused by the passage of concrete pole for 20~30 years or more, damage and destruction of the poles have increased the demand for maintenance. In this paper, 10 flexural strength test specimens were fabricated by using crack self - healing concrete of Fly ash, GGBS, CA, etc. The compressive strength of the concrete with slag was found to be excellent, but the concrete with fly ash was slightly below the reference strength. In addition, the crack loadings of the specimens satisfied the criteria of KS F 4304. In the case of the load-deflection and strain relations, the behavior of the fly ash specimens was similar, but in the specimens containing the blast furnace slag, The results showed that a large amount of strain occurred.

Integrating physics-based fragility for hierarchical spectral clustering for resilience assessment of power distribution systems under extreme winds

  • Jintao Zhang;Wei Zhang;William Hughes;Amvrossios C. Bagtzoglou
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Widespread damages from extreme winds have attracted lots of attentions of the resilience assessment of power distribution systems. With many related environmental parameters as well as numerous power infrastructure components, such as poles and wires, the increased challenge of power asset management before, during and after extreme events have to be addressed to prevent possible cascading failures in the power distribution system. Many extreme winds from weather events, such as hurricanes, generate widespread damages in multiple areas such as the economy, social security, and infrastructure management. The livelihoods of residents in the impaired areas are devastated largely due to the paucity of vital utilities, such as electricity. To address the challenge of power grid asset management, power system clustering is needed to partition a complex power system into several stable clusters to prevent the cascading failure from happening. Traditionally, system clustering uses the Binary Decision Diagram (BDD) to derive the clustering result, which is time-consuming and inefficient. Meanwhile, the previous studies considering the weather hazards did not include any detailed weather-related meteorologic parameters which is not appropriate as the heterogeneity of the parameters could largely affect the system performance. Therefore, a fragility-based network hierarchical spectral clustering method is proposed. In the present paper, the fragility curve and surfaces for a power distribution subsystem are obtained first. The fragility of the subsystem under typical failure mechanisms is calculated as a function of wind speed and pole characteristic dimension (diameter or span length). Secondly, the proposed fragility-based hierarchical spectral clustering method (F-HSC) integrates the physics-based fragility analysis into Hierarchical Spectral Clustering (HSC) technique from graph theory to achieve the clustering result for the power distribution system under extreme weather events. From the results of vulnerability analysis, it could be seen that the system performance after clustering is better than before clustering. With the F-HSC method, the impact of the extreme weather events could be considered with topology to cluster different power distribution systems to prevent the system from experiencing power blackouts.

Neural Bases of Empathy in Competitive vs. non-Competitive situation (경쟁과 비경쟁 상황에서 공감의 신경학적 기제)

  • Hwang, Su-Young;Yoon, Mi-Sun
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.3
    • /
    • pp.441-467
    • /
    • 2016
  • This fMRI study is aim to investigate effects of competitive environment in cognitive empathic process in human brain. Empathy is known as a crucial factor for human's adaptive behavior in aspects of social cognition and it is almost automatic process, on the other hand competitive situation is psychologically devastated environment to win someone for getting rewards. We hypnotized that reading and understanding of other person's mind are a specific characteristic related to survival evolutionarily, however competition would have an effect on the empathic cognitive process because of mechanisms of competition. To manipulate the competitive atmosphere, one researcher took a role of competitor against participants and they were instructed to get monetary rewards when their performance was better than a competitor. 21 participants(9 males and 12 females) performed to judge the emotional valence of the empathic task consisted of illustrated images with various situation could be experienced in real world as on $1^{st}$ person perspective in both competitive and non-competitive condition, and did same performance with objects stimulus in control condition. In order to examine the competition effects on empathic process,, hemodynamic response were obtained during fMRI session and the imaging data were analyzed to identify brain regions where responses to each condition across the two consecutive runs. Participants' reaction time in competitive condition was faster statistically significant than non-competitive one. Activation for competitive condition increased in the following areas: ACC, mPFC, SMG, thalamus extended caudate and Nacc, parahippocampal gyrus, and for non-competitive condition increased paracingulate gyrus, temporal pole, vmPFC, superior occipital gyrus. As a result of regression analysis using empathic scores as covariance, the rSMG, IFG, fusiform gyrus, thalamus, putamen were correlated with higher empathic levels, and TPJ were correlated with lower empathic scores. We suggest that these observations could mean competitive environment have an effect on neural base of cognitive empathic process.

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.

Acoustic Noise Reduction and Power Factor Correction in Switched Reluctance Motor Drives

  • Rashidi, Amir;Saghaiannejad, Sayed Mortaza;Mousavi, Sayed Javad
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, a four-phase 8/6-pole 4-kW SR motor drive model is presented. Based on experimental data, the model allows an accurate simulation of a drive in dynamic operation. Simulations are performed and a laboratory type set-up is built based on a TI TMS320F2812 platform to experimentally verify the theoretical results obtained for a SR motor. To reduce acoustic noise and to correct the power factor of this drive, a two-stage power converter is proposed that uses a current source rectifier (CSR) as the input stage for the asymmetrical converter of the studied SRM. Employing the space-vector modulation (SVM) method in matrix converters, the CSR switching allows the dc link's capacitors to be eliminated and the power factor of the SRM drive to be improved. As the electrical motive force (emf) is directly proportional to the rotor speed, the input voltage to the machine can be programmed to be a function of the speed with the modulation index of the CSR, leading to a reduction in the acoustic noise of the SRM drive. Simulation of the whole SRM drive system is performed using MATLAB-Simulink. The results fully comply with the required conditions such as power factor correction with an improvement in the THD.

Y$Ba_2$$Cu_3$$O_{7-$\delta$}$ Modified Hairpin-Type Bandpass Filter (변형된 Hairpin-Type의 $YBa_2$$Cu_3$$O_{7-$\delta$}$ 대역통과 필터)

  • Jung, K. R;Park, S. J.;Sok, J. H.;Lee, E. H.;Kang, J. H.
    • Progress in Superconductivity
    • /
    • v.2 no.2
    • /
    • pp.92-96
    • /
    • 2001
  • We have fabricated a modified hairpin-type YBa$_2$Cu$_3$O$_{7-{\delta}}$ (YBCO) 2-pole microstrip bandpass filter with the center frequency of 5.8 GHz. We designed a hairpin-type filter with interdigital-coupled inner poles to improve the filter performance. Compared to a typical hairpin-type filter of the same size, the center frequency, the bandwidth and the insertion loss appeared smaller by 14.5% ,29.6%, and 0.55 dB, respectively. The dimensions of the filter were 13.7mm ${\times}$3.3 mm. YBCO films deposited on r-cut sapphire buffered with a CeO$_2$thin layer were used fur making the filter.

  • PDF