• Title/Summary/Keyword: F-lattice

Search Result 215, Processing Time 0.026 seconds

Mössbauer Study of Al0.2CoFe1.8O4 Ferrite Powders (Mössbauer 분광법에 의한 Al0.2CoFe1.8O4분말의 자기적 특성 연구)

  • Chae, Kwang-Pyo;Lee, Jae-Gwang;Kweon, Hyuck-Su;Lee, Young-Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.231-236
    • /
    • 2003
  • The $Al_{0.2}$CoF $e_{1.8}$ $O_4$ferrite powders have been prepared by the sol-gel method. The crystallographic and magnetic properties of the sample depending on annealing temperature have been investigated by means of x-ray diffraction, FE SEM, Mossbauer spetroscopy and vibrating sample magnetometry. The x-ray diffractions of all samples annealing temperature above 873 K clearly indicate the presence of spinel structure, the lattice constant decrease from 8.425 $\AA$ at 873 K to 8.321 $\AA$ at 1073 K, whereas the particle size rapidly increase from about 39 nm at 673 K to about 108 nm at 1073 K. The Mossbauer spectra annealed above 873 K could be fitted as the superposition of two sextets due to F $e^{3+}$ at A-site and B-site. The isomer shift (IS) and quadruple splitting (QS) values nearly constant with annealing temperature, whereas magnetic hyperfine field ( $H_{hf}$) of A-site slowly in crease and that of B-site fastly increases with increasing annealing temperature. The magnetic behaviour of powders shows that the saturation magnetization increase from 0.7 emu/g at 473 K to 72.1 emu/g at 1073 K while the coercivity decrease from 0.951 kOe at 673 K to 0.374 kOe at 1073 K with increasing annealing temperature.

Photoluminescence Properties of BiNbO4:RE3+ (RE = Dy, Eu, Sm, Tb) Phosphors (BiNbO4:RE3+ (RE = Dy, Eu, Sm, Tb) 형광체의 광학 특성)

  • Lee, Sangwoon;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.206-211
    • /
    • 2017
  • $BiNbO_4:RE^{3+}$ (RE = Dy, Eu, Sm, Tb) phosphors were prepared by solid-state reaction at $1100^{\circ}C$ and their structural, photoluminescent, and morphological properties were investigated. XRD patterns exhibited that all the synthesized phosphors exhibited a triclinic system with a dominant (210) diffraction peak, irrespective of the type of activator ions. The surface morphologies of rare-earth-ion-doped $BiNbO_4$ phosphors were found to depend strongly on the type of activator ions. The $Eu^{3+}$ and $Dy^{3+}$ doped $BiNbO_4$ phosphors revealed a strong red (613 nm) emission resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ and a dominant yellow (575 nm) emission originating from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ respectively, which were the electric dipole transitions, indicating that the activator ions occupy sites of non-inversion symmetry in the $BiNbO_4$ phosphor. The main reddish-orange emission spectra of $Sm^{3+}$-doped $BiNbO_4$ phosphors were due to the $^4G_{5/2}{\rightarrow}^6H_{7/2}$ (607 nm) magnetic dipole transition, indicating that the $Sm^{3+}$ ions were located at inversion symmetry sites in the $BiNbO_4$ host lattice. As for $Tb^{3+}$-doped phosphors, green emission was obtained under excitation at 353 nm and its CIE chromaticity coordinates were (0.274, 0.376). These results suggest that multicolor emission can be achieved by changing the type of activator ions incorporated into the $BiNbO_4$ host crystal.

Synthesis of wagnerite and its analogues for ceramic pigments (I) (도자기 유약용 Wagnerite의 합성(I))

  • Chung, Yong-Sun;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.640-647
    • /
    • 1997
  • Wagnerite ($Mg_2PO_4F)$ was successfully synthesized in a sealed platinum tube and the complete substitutions of $Co^{++}, Ni^{++}, Cu^{++} \;and\;Zn^{++}$for Mg were made in the wagnerite structure. Wagnerite did not decompose until it reached its melting temperature. It was observed that wagnerite underwent only one inversion at $1255^{\circ}C$, prior to melting at $1340^{\circ}C$. The lattice parameters of wagnerites were linearly increased by the substitutions of $Co^{++}$ and $Zn^{++}$ and decreased by the substitutions of $Ni^{++}$ and $Cu^{++}$. The substitutions of wagnerite with $Co^{++}, Ni^{++}$ and $Cu^{++}$ resulted in purple, orange and green colors, respectively, The colors of pigments became more intense and suitable for coloring of glazes and plastics as the amount of metal ions increased.

  • PDF

Synthesis and Photoluminescence Properties of Red Phosphors Gd1-xAl3(BO3)4:Eux3+ (적색 형광체 Gd1-xAl3(BO3)4:Eux3+의 합성과 발광 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.145-149
    • /
    • 2012
  • Red phosphors of $Gd_{1-x}Al_3(BO_3)_4:{Eu_x}^{3+}$ were synthesized by using the solid-state reaction method. The phase structure and morphology of the phosphors were measured using X-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM), respectively. The optical properties of $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors with concentrations of $Eu^{3+}$ ions of 0, 0.05, 0.10, 0.15, and 0.20 mol were investigated at room temperature. The crystals were hexagonal with a rhombohedral lattice. The excitation spectra of all the phosphors, irrespective of the $Eu^{3+}$ concentrations, were composed of a broad band centered at 265 nm and a narrow band having peak at 274 nm. As for the emission spectra, the peak wavelength was 613 nm under a 274 nm ultraviolet excitation. The intensity ratio of the red emission transition ($^5D_0{\rightarrow}^7F_2$) to orange ($^5D_0{\rightarrow}^7F_1$) shows that the $Eu^{3+}$ ions occupy sites of no inversion symmetry in the host. In conclusion, the optimum doping concentration of $Eu^{3+}$ ions for preparing $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors was found to be 0.15 mol.

THE CRYSTAL AND MOLECULAR STRUCTURE OF 3-N-(2,2-DIETHOXY-ETHYL)-2-BENZIMIDAZOLINONE (3-N-(2,2디에토오키시에칠) -2벤즈 이미다즈오리논의 결정 및 분자구조)

  • 안중태;이숙자
    • Korean Journal of Crystallography
    • /
    • v.2 no.2
    • /
    • pp.7-12
    • /
    • 1991
  • C13H1SN203, Mr=250.29, is monoclinic, space group P21/a with a=8.765(4), b=17.679(3), c= 9.238(4) A, b=105.6(3)A, Z=4, V=1378.53 A3, A (Mo Ka)=0.71069 A, F(000)=536, T=299, R=0.080 for 1783 unique observed reflections with I > 1.0 σ(I). The structure was solved by direct methods and relined by cascade diagona! least-squares refinement. The C-H bond lengths and methyl groups were fixed and refined as their ideal geometry. One of two ethoxy groups is more twisted by 1 was compared with another. There is one hydrogen bond in the crystal lattice, N H‥‥0= 2.789A, forming a molecular pair packing along the b-axis.

  • PDF

Microwave Dielectric Properties of $(Na_{1/2}{\;}La_{1/2})TiO_3$ Caramics ($(Na_{1/2}{\;}La_{1/2})TiO_3$ 세라믹스의 고주파 유전특성)

  • Yun, Jung-Rag;Hong, Suk-Kyung;Kim, Kyung-Yong
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.476-481
    • /
    • 1993
  • Microwave dielectric properties of $(Na_{1/2}{\;}La_{1/2})TiO_3$ (NLT) ceramics which is an A site complex perovskite structure are investigated. Dense sintered bodies are obtained when calcined at $1000^{\circ}C$ for 4h and then sintered in the temperature range between $1350^{\circ}{\;}and{\;}1450^{\circ}C$. NLT shows the bulk density of $4.95g/\textrm{cm}^3$, relative density of 96.4%, and a simple cubic structure with lattice constant(a) of 3.873$\AA$. Dielectric Constant(${\varepsilon}_r$) and quality factor Q increase as bulk density and average grain size increase respectively. NLT has the dielectric ${\varepsilon}_r=125$, Q=2842(fo=3 GHz), ${\tau}_f=465{\;}ppm/^{\circ}C$ when sintered at $1400^{\circ}C$ for 4h.

  • PDF

Controlled Synthesis of Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition

  • Han, Jaehyun;Lee, Jun-Young;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.630-630
    • /
    • 2013
  • Recently, atomically smooth hexagonal boron nitride(h-BN) known as a white graphene has drawn great attention since the discovery of graphene. h-BN is a III-V compound and has a honeycomb structure very similar to graphene with smaller lattice mismatch. Because of strong covalent sp2bonds like graphene, h-BN provides a high thermal conductivity and mechanical strength as well as chemical stability of h-BN superior to graphene. While graphene has a high electrical conductivity, h-BN has a highly dielectric property as an insulator with optical band gap up to 6eV. Similar to the graphene, h-BN can be applied to a variety of field, such as gate dielectric layers/substrate, ultraviolet emitter, transparent membrane, and protective coatings. However, up until recently, obtaining and controlling good quality monolayer h-BN layers have been too difficult and challenging. In this work, we investigate the controlled synthesis of h-BN layers according to the growth condition, time, temperature, and gas partial pressure. h-BN is obtained by using chemical vapor deposition on Cu foil with ammonia borane (BH3NH3) as a source for h-BN. Scanning Transmission Electron Microscopy (STEM, JEOL-JEM-ARM200F) is used for imaging and structural analysis of h-BN layer. Sample's surface morphology is characterized by Field emission scanning electron microscopy (SEM, JEOL JSM-7100F). h-BN is analyzed by Raman spectroscopy (HORIBA, ARAMIS) and its topographic variations by Atomic force microscopy (AFM, Park Systems XE-100).

  • PDF

Synthesis and luminescent properties of $Er^{3+}$ doped $CaZrO_3$ long persistent phosphors ($Er^{3+}$를 첨가한 $CaZrO_3$ 축광성 형광체의 합성 및 발광 특성 분석)

  • Park, Byeong-Seok;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Novel long persistent phosphors of $CaZrO_3:Er^{3+}$ have been synthesized by traditional solid state reaction method. The long persistent phosphor crystalline particles were characterized by the X-ray diffraction (XRD), photoluminescence spectrophotometer, thermoluminescence (TL) and luminance meter. The results reveal that the samples are composed of single $CaZrO_3$ phase. The broadband emission spectra of 446 nm peak and 550 nm peak was revealed by synthesized at high temperature in $N_2$ gas. Green long persistent phosphors have been observed in the sys_em for over 6 h after UV irradiation (254 nm). The main emission peak was ascribed to $Er^{3+}$ ions transition from $^5D_{5/2}{\rightarrow}^4F_{9/2},\;^2H_{12/2},\;^4S_{3/2}{\rightarrow}^4I_{13/2}\;and\;^2G_{9/2}{\rightarrow}^4I_{13/2}$, and the afterglow may be ascribed to the suitable trap centers in the $CaZrO_3$ host lattice.

PZT/LSMO/Pt Thin-Film by Pulse Laser and Sol-Gel Deposition (PZT/LSMO/Pt에 대한 펄스레이저 및 졸겔법에 의한 증착연구)

  • Choi, Kang-Ryong;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-24
    • /
    • 2005
  • This work is to present each properties and the interfacial characterization between PZT layer and LSMO layer of PZT/LSMO/Pt. LSMO thin film grown by KrF(248 nm) excimer lasers are used in pulsed in pulsed laser deposition(PLD). PZT coposites thin films were deposited by spin coating using a commercial resist spinner. LSMO thin film by deposition oxygen pressure 125 mtorr have rhombohedral structure on Pt(111) substrate. The PZT/LSM/Pt pre-orientate to [111] direction. The final thin films were shown that magnetic and electric property was typical value, respective. We report that the lattice between the PZT/LSMO thin film and the substrate plays a very important role and may control to another effects.

Thermoluminescence of Rb2LiCeCl6 Halide Scintillator (Rb2LiCeCl6 할라이드 섬광체의 열형광 특성)

  • Kim, Sunghwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1211-1215
    • /
    • 2014
  • We developed a new $Rb_2LiCeCl_6$ scintillator and determined the scintillation and thermoluminescence properties of the scintillator. The emission spectrum of $Rb_2LiCeCl$ is located in the range of 350 ~ 410 nm, peaking at 368 nm and 378 nm, due to the 4f ${\rightarrow}$ 5d transition of $Ce^{3+}$ ions. The fluorescence decay time of the crystal is composed two components. The fast component is 71 ns (85%) and the slow component is 405 ns (15%) of the crystal. The after-glow is caused by the electron and hole traps in the crystal lattice. We determined physical parameters of the traps in the crystal. The determined activation energy(E), kinetic order(m) and frequency factor(s) of the trap are 0.75 eV, 1.48 and $3.0{\times}10^8s^{-1}$, respectively.