• Title/Summary/Keyword: F-RPN

Search Result 2, Processing Time 0.018 seconds

A Study on Machine Failure Improvement Using F-RPN(Failure-RPN): Focusing on the Semiconductor Etching Process (F-RPN(Failure-RPN)을 이용한 장비 고장률 개선 연구: 반도체 식각 공정을 중심으로)

  • Lee, Hyung-Geun;Hong, Yong-Min;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.27-33
    • /
    • 2021
  • The purpose of this study is to present a novel indicator for analyzing machine failure based on its idle time and productivity. Existing machine repair plan was limited to machine experts from its manufacturing industries. This study evaluates the repair status of machines and extracts machines that need improvement. In this study, F-RPN was calculated using the etching process data provided by the 2018 PHM Data Challenge. Each S(S: Severity), O(O: Occurence), D(D: Detection) is divided into the idle time of the machine, the number of fault data, and the failure rate, respectively. The repair status of machine is quantified through the F-RPN calculated by multiplying S, O, and D. This study conducts a case study of machine in a semiconductor etching process. The process capability index has the disadvantage of not being able to divide the values outside the range. The performance of this index declines when the manufacturing process is under control, hereby introducing F-RPN to evaluate machine status that are difficult to distinguish by process capability index.

${\gamma}$-PGA Production by Cultures of Alkalophilic Alcaligenes sp. (호알카리성 Alcaligenes sp.의 배양에 의한 ${\gamma}$-PGA의 생산)

  • 이신영;강태수김갑수
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.217-223
    • /
    • 1993
  • Methods for production of ${\gamma}$-Polyglutamic acid( ${\gamma}$-PGA ) by an alkalophilic Alcaligenes sP. were investigated for batch and continuous culture processes. Both quantity and productivity of ${\gamma}$-PGA by Alcaligenes sp. in batch culture were gradually increased with the increase of glucose concentration up to 50g/l , but the maximal production yield of 63% was obtained at 10g/l of glucose concentration. The highest specific growth rate was about $0.25hr^{-1}$ at 50un of glucose concentration, and substrate inhibition was observed at above 50g1f of glucose concentration. The highest ${\gamma}$-PGA formation about 11g/l in a batch system was obtained at 31'C, pH 10.0 and 87rpn Productivity of 2.80g/l/hr for continuous cultivation was 9 times higher than the productivity for batch cultivation.

  • PDF