• Title/Summary/Keyword: Eye detection

Search Result 432, Processing Time 0.019 seconds

Drowsiness Detection using Eye-blink Patterns (눈 깜박임 패턴을 이용한 졸음 검출)

  • Choi, Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2011
  • In this paper, a novel drowsiness detection algorithm using eye-blink pattern is proposed. The proposed drowsiness detection model using finite automata makes it easy to detect eye-blink, drowsiness and sleep by checking the number of input symbols standing for closed eye state only. Also it increases the accuracy by taking vertical projection histogram after locating the eye region using the feature of horizontal projection histogram, and minimizes the external effects such as eyebrows or black-framed glasses. Experimental results in eye-blinks detection using the JZU eye-blink database show that our approach achieves more than 93% precision and high performance.

Detection of Red Eye Region Using Redness and Local Characteristics (적색도와 국소적 특성을 이용한 적목 영역의 검출)

  • Kim, Tae-Woo;Yoo, Hyeon-Joong;Cho, Tae-Gyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1098-1103
    • /
    • 2007
  • This paper presents an automatic detection and removal method of red eye in a color image. The method detects initial red eye region based on redness and geometric feature, and extracts final red eye region considering local characteristics around the initial red eye region. Red eye fur the foal red eye region is removed by soft based removal method. In the experiments, the proposed method improved the red eye detection and removal results than that of Willamowski and Csurka[1].

  • PDF

A New Confidence Measure for Eye Detection Using Pixel Selection (눈 검출에서의 픽셀 선택을 이용한 신뢰 척도)

  • Lee, Yonggeol;Choi, Sang-Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.7
    • /
    • pp.291-296
    • /
    • 2015
  • In this paper, we propose a new confidence measure using pixel selection for eye detection and design a hybrid eye detector. For this, we produce sub-images by applying a pixel selection method to the eye patches and construct the BDA(Biased Discriminant Analysis) feature space for measuring the confidence of the eye detection results. For a hybrid eye detector, we select HFED(Haar-like Feature based Eye Detector) and MFED(MCT Feature based Eye Detector), which are complementary to each other, as basic detectors. For a given image, each basic detector conducts eye detection and the confidence of each result is estimated in the BDA feature space by calculating the distances between the produced eye patches and the mean of positive samples in the training set. Then, the result with higher confidence is adopted as the final eye detection result and is used to the face alignment process for face recognition. The experimental results for various face databases show that the proposed method performs more accurate eye detection and consequently results in better face recognition performance compared with other methods.

Comparative Performance Evaluations of Eye Detection algorithm (눈 검출 알고리즘에 대한 성능 비교 연구)

  • Gwon, Su-Yeong;Cho, Chul-Woo;Lee, Won-Oh;Lee, Hyeon-Chang;Park, Kang-Ryoung;Lee, Hee-Kyung;Cha, Ji-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.722-730
    • /
    • 2012
  • Recently, eye image information has been widely used for iris recognition or gaze detection in biometrics or human computer interaction. According as long distance camera-based system is increasing for user's convenience, the noises such as eyebrow, forehead and skin areas which can degrade the accuracy of eye detection are included in the captured image. And fast processing speed is also required in this system in addition to the high accuracy of eye detection. So, we compared the most widely used algorithms for eye detection such as AdaBoost eye detection algorithm, adaptive template matching+AdaBoost algorithm, CAMShift+AdaBoost algorithm and rapid eye detection method. And these methods were compared with images including light changes, naive eye and the cases wearing contact lens or eyeglasses in terms of accuracy and processing speed.

Performance Improvement for Robust Eye Detection Algorithm under Environmental Changes (환경변화에 강인한 눈 검출 알고리즘 성능향상 연구)

  • Ha, Jin-gwan;Moon, Hyeon-joon
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.271-276
    • /
    • 2016
  • In this paper, we propose robust face and eye detection algorithm under changing environmental condition such as lighting and pose variations. Generally, the eye detection process is performed followed by face detection and variations in pose and lighting affects the detection performance. Therefore, we have explored face detection based on Modified Census Transform algorithm. The eye has dominant features in face area and is sensitive to lighting condition and eye glasses, etc. To address these issues, we propose a robust eye detection method based on Gabor transformation and Features from Accelerated Segment Test algorithms. Proposed algorithm presents 27.4ms in detection speed with 98.4% correct detection rate, and 36.3ms face detection speed with 96.4% correct detection rate for eye detection performance.

Real-Time Face Detection by Estimating the Eye Region Using Neural Network (신경망 기반 눈 영역 추정에 의한 실시간 얼굴 검출 기법)

  • 김주섭;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.21-24
    • /
    • 2001
  • In this paper, we present a fast face detection algorithm by estimating the eye region using neural network. To implement a real time face detection system, it is necessary to reduce search space. We limit the search space just to a few pairs of eye candidates. For the selection of them, we first isolate possible eye regions in the fast and robust way by modified histogram equalization. The eye candidates are paired to form an eye pair and each of the eye pair is estimated how close it is to a true eye pair in two aspects : One is how similar the two eye candidates are in shape and the other is how close each of them is to a true eye image A multi-layer perceptron neural network is used to find the eye candidate region's closeness to the true eye image. Just a few best candidates are then verified by eigenfaces. The experimental results show that this approach is fast and reliable. We achieved 94% detection rate with average 0.1 sec Processing time in Pentium III PC in the experiment on 424 gray scale images from MIT, Yale, and Yonsei databases.

  • PDF

A Method to Identify the Identification Eye Status for Drowsiness Monitoring System (졸음 방지 시스템을 위한 눈 개폐 상태 판단 방법)

  • Lee, Juhyeon;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1667-1670
    • /
    • 2014
  • This paper describes a method for detecting the pupil region and identification of the eye status for driver drowsiness detection system. This program detects a driver's face and eyes using viola-jones face detection algorithm and extracts the pupil area by utilizing mean values of each row and column on the eye area. The proposed method uses binary images and the number of black pixels to identify the eye status. Experimental results showed that the accuracy of classification eye status(open/close) was above 90%.

Face Detection by Eye Detection with Progressive Thresholding

  • Jung, Ji-Moon;Kim, Tae-Chul;Wie, Eun-Young;Nam, Ki-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1689-1694
    • /
    • 2005
  • Face detection plays an important role in face recognition, video surveillance, and human computer interface. In this paper, we present a face detection system using eye detection with progressive thresholding from a digital camera. The face candidate is detected by using skin color segmentation in the YCbCr color space. The face candidates are verified by detecting the eyes that is located by iterative thresholding and correlation coefficients. Preprocessing includes histogram equalization, log transformation, and gray-scale morphology for the emphasized eyes image. The distance of the eye candidate points generated by the progressive increasing threshold value is employed to extract the facial region. The process of the face detection is repeated by using the increasing threshold value. Experimental results show that more enhanced face detection in real time.

  • PDF

Development of Low-Cost Vision-based Eye Tracking Algorithm for Information Augmented Interactive System

  • Park, Seo-Jeon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.

Detection of eye using optimal edge technique and intensity information (눈 영역에 적합한 에지 추출과 밝기값 정보를 이용한 눈 검출)

  • Mun, Won-Ho;Choi, Yeon-Seok;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.196-199
    • /
    • 2010
  • The human eyes are important facial landmarks for image normalization due to their relatively constant interocular distance. This paper introduces a novel approach for the eye detection task using optimal segmentation method for eye representation. The method consists of three steps: (1)edge extraction method that can be used to accurately extract eye region from the gray-scale face image, (2)extraction of eye region using labeling method, (3)eye localization based on intensity information. Experimental results show that a correct eye detection rate of 98.9% can be achieved on 2408 FERET images with variations in lighting condition and facial expressions.

  • PDF