• Title/Summary/Keyword: Extrusion type

Search Result 172, Processing Time 0.028 seconds

A Study on Processing-Structure-Property Relationships of Extruded Carbon Nanomaterial-Polypropylene Composite Films (탄소나노튜브 및 그래핀 나노플레이트 폴리프로필렌 복합재 필름 압출 및 물성 평가)

  • Kim, Byeong-Joo;Deka, Biplab K.;Kang, Gu-Hyuk;Hwang, Sang-Ha;Park, Young-Bin;Jeong, In-Chan;Choi, Dong-Hyuk;Son, Dong-Il
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.254-258
    • /
    • 2013
  • Polypropylene films reinforced with multi-walled carbon nanotubes and exfoliated graphite nanoplatelets were fabricated by extrusion, and the effects of filler type and take-up speed on the mechanical properties and microstructure of composite films were investigated. Differential scanning calorimetry revealed that the addition of carbon nanomaterials resulted in increased degree of crystallinity. However, increasing the take-up speed reduced the degree of crystallinity, which indicates that tension-induced orientations of polymer chains and carbon nanomaterials and the loss of degree of crystallinity due to rapid cooling at high take-up speeds act as competing mechanisms. These observations were in good agreement with tensile properties, which are governed by the degree of crystallinity, where the C-grade exfoliated graphite nanoplatelet with a surface area of $750m^2/g$ showed the greatest reinforcing effect among all types of carbon nanomaterials used. Scanning electron microscopy was employed to observe the carbon nanomaterial dispersion and orientation, respectively.

Various Types and Manufacturing Techniques of Nano and Micro Capsules for Nanofood

  • Kim, Dong-Myong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.53-63
    • /
    • 2006
  • Nano and micro capsulation (NM capsulation) involve the incorporation for nanofood materials, enzymes, cells or other materials in small capsules. Since Kim D. M. (2001) showed that a new type of food called firstly the name of nanofood, which means nanotechnology for food, and the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability applications for this nanofood technique have increased in the food. NM capsules for nanofood is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of nanofood is NM capsulated - flavouring agents, acids, bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of NM capsulation for sweeteners such as aspartame and flavors in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signaled by changes in pH, temperature, irradiation or osmotic shock. NM capsulation for the nanofood, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of nanofood emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the NM capsulation for nanofood in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  • PDF

Development and Product Quality of High Nutrition-Low Cost Supplementary Foods for the Children for Wonseong Country Comprehensive Nutrition Program in Korea -Part I : Formulation and production performance of Proposed Supplementary Foods- (원성군 시범종합영양사업을 위한 어린이용 고영양보충식품의 개발에 관한 연구 -제 1 보 : 제품의 조제 및 생산시험-)

  • Cheigh, Hong-Sik;Pyun, Yoo-Ryang;Ryu, Chung-Hee;Kwon, Tai-Wan
    • Journal of Nutrition and Health
    • /
    • v.13 no.4
    • /
    • pp.199-206
    • /
    • 1980
  • Formulation and production performance of proposed high nutriton-low cost (HNLC) supplementary foods for children in Korea were studied for Wonseong County Comprehensive Nutrition Program. The basic formulas recommendable from the experimental results on the nutritional value, organoleptical qualities and mechanical performance using MFM-KIST extrusion cooking system were considered as CSS-3, CSS-4 and BSS-4. Initial priority of application soybean was with CSS-4(68% corn flour, defatted soybean flour 20%, sesame 2%, corn oil 4%, sugar 4%, salt 1%, vitamins, mineral and other additives 1%). All these formulas as on rioted snack type-HNLC supplementary foods were found in the acceptable range of mechanical, organoleptical and economical point of view.

  • PDF

Influence of Weak Ground Ahead of the Tunnel Face on 3D-displacement and Face Extrusion (막장전방의 연약층이 터널 3차원변위 및 막장 수평변위에 미치는 영향)

  • Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.189-206
    • /
    • 2003
  • During tunnel excavation in urban area a systematic monitoring is important for the purpose of determination of support type and quantity, as well as for the control of stability of both surface structures and the tunnel itself due to the frequently, and in many cases, abruptly changing ground condition. In Austria absolute displacement monitoring methods have replaced relative displacement measurements by geodetic methods to a large extent. Prompt detection of weak ground ahead of the tunnel face as well as better adjustment of excavation and support to the geotechnical conditions is possible with the help of the improved methods of data evaluation on sites. Deformation response of the ground to excavation starts ahead of the tunnel face, therefore, the deformation and state of the tunnel advance core is the key factor of the whole deformation process after excavation. In other words, the rigidity and state of the advance core play a determining role in the stability of both surface structures and the tunnel itself. This paper presents the results from detailed three-dimensional numerical studies, exploring vertical displacements, vector orientations and extrusions on tunnel face during the progressive advancement for the shallow tunnel in various geotechnical conditions.

Preparation of Controlled Release Spheronized Beads by a Simple Extrusion and Modified Spheronization Process

  • Lee, Si-Beum;Kim, Min-Soo;Jun, Seoung-Wook;Park, Jeong-Sook;Hwang, Sung-Joo
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.619-625
    • /
    • 2005
  • Beads loaded with the water-soluble drug, phenylpropanolamine HCl (PPA), were prepared using an extruder and double arm counter-rotating roller modified from a traditional pill machine. The mean diameter of the cylindrical rod-like extrudate from the ram extruder was 3 mm; that of the uncoated bead after cutting and spheronization by the modified double arm counter-rotating roller was 3.26~3.28 mm. Although the surface of the beads was moderately rough and irregular, some exhibited hump-shaped protrusions, the sphericity was acceptable (roundness 1.15) and adequate for the subsequent coating process. An increase in mean diameter of the coated beads and improvements in friability and sphericity were observed in proportion to the amount of coating material applied (ethylcellulose or Eudragit?? RS 100). It was also found that the release rate of PPA from the coated beads could be controlled by the amount and type of coating materials applied or with the incorporation of Eudragit ?? RS 100 into the core matrix. Further modifications to the double arm counter-rotating roller, including adjustment of the rotation speed and distance between the rollers, would yield smaller uncoated beads with improved roundness and surface roughness. In conclusion , the present method could be potentially applied to prepare controlled release drug delivery beads or pellet dosage forms.

Properties of Modified Rice Starch by Physical Modification (물리적 변성에 의한 쌀변성전분의 이화학적 성질)

  • Kum, Jun-Seok;Lee, Hyun-Yu;Shin, Myoung-Gon;Yoo, Mi-Ra;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.428-435
    • /
    • 1994
  • Properties of modified rice starches prepared in drum drying and extrusion were evaluated to use for effective utilization. Blue value was the lowest (p<0.05) for waxy rice starch and L value was decreased after modification of starches. Water solubility index was the highest for modified starches prepared in extrusion, while water absorption index was the highest for modified starches prepared in drum drying. Cold-Water-Solubility was the highest (p<0.05) for modified rice starch prepared in drum drying (RD). Consistency index of RD was drastically increased as shear rate increased and yield stress was the highest for RD. Results of Gel Permeation Chromatography showed that starch components were broken down into lower molecular weight materials and amylose are degraded by modification. Changes in the X-ray diffrectometry pattern indicated the transformation of granule into an amorphous state during modification and illustrated V-type.

  • PDF

Impact of root canal curvature and instrument type on the amount of extruded debris during retreatment

  • Burcu Serefoglu;Gozde Kandemir Demirci;Seniha Micoogullari Kurt;Ilknur Kasikci Bilgi;Mehmet Kemal Caliskan
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.5.1-5.13
    • /
    • 2021
  • Objectives: The aim of the current study was to assess whether the amount of extruded debris differs for straight and severely curved root canals during retreatment using H-files, R-Endo, Reciproc and ProTaper Universal Retreatment (PTU-R) files. Additionally, the area of residual filling material was evaluated. Materials and Methods: Severely curved (n = 104) and straight (n = 104) root canals of maxillary molar teeth were prepared with WaveOne Primary file and obturated with gutta-percha and AH Plus sealer. Root canal filling materials were removed with one of the preparation techniques: group 1: H-file; group 2: R-Endo; group 3: Reciproc; group 4: PTU-R (n = 26). The amount of extruded material and the area of the residual filling material was measured. The data were analyzed with 2-way analysis of variance (ANOVA) and 1-way ANOVA at the 0.05 significance level. Results: Except for Reciproc group (p > 0.05), PTU-R, R-Endo, and H-file systems extruded significantly more debris in severely curved canals (p < 0.05). Each file system caused more residual filling material in severely curved canals than in straight ones (p < 0.05). Conclusions: All instruments used in this study caused apical debris extrusion. Root canal curvature had an effect on extruded debris, except for Reciproc system. Clinicians should be aware that the difficult morphology of the severely curved root canals is a factor increasing the amount of extruded debris during the retreatment procedure.

Application of 3D Printing Technology in Seismic Physical Modeling (탄성파 축소모형 실험에서의 3D 프린팅 기술 활용)

  • Kim, Daechul;Shin, Sungryul;Chung, Wookeen;Shin, Changsoo;Lim, Kyoungmin
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.56 no.3
    • /
    • pp.260-269
    • /
    • 2019
  • The application of 3D printing technology in seismic physical modeling was investigated and the related domestic research was conducted. First, seven types of additive manufacturing methods were evaluated. In this report, to confirm the application of 3D printing technology, related studies in domestic and international journals of geophysics were searched and a comprehensive analysis was conducted according to year and the additive manufacturing type. The analysis showed that studies on 3D printing technology have been dominantly conducted since the 2010s, which corresponds to the time when 3D printers were commercialized. Moreover, 87% of the studies used the material extrusion additive manufacturing method, and the research was conducted in specific universities. This research can be used as basic data for application of 3D printing technology in geophysics.

Effect of Forming Process and Particle Size on Properties of Porous Silicon Carbide Ceramic Candle Filters (성형공정(成形工程)과 원료입도(原料粒度)가 다공성(多孔性) 탄화규소(炭火硅素) 세라믹 캔들 필터 특성(特性)에 미치는 영향(影響))

  • Han, In-Sub;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.31-43
    • /
    • 2010
  • To fabricate porous SiC candle filter for filtration facility of the IGCC system, the candle type filter preforms were fabricated by ramming and vacuum extrusion process. A commercially available ${\alpha}$-SiC powders with various particle size were used as starting raw materials, and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as non-clay based inorganic sintering additive. The candle typed preforms by ramming process and vacuum extrusion were sintered at $1400^{\circ}C$ for 2h in air atmosphere. The effect of forming method and particle size of filter matrix on porosity, density, strength (flexural and compressive strength) and microstructure of the sintered porous SiC candle tilters were investigated. The sintered porous SiC filters which were fabricated by ramming process have more higher density and strength than extruded filter in same particle size of the matrix, and its maximum density and 3-point bending strength were $2.00\;g/cm^3$ and 45 MPa, respectively. Also, corrosion test of the sintered candle filter specimens by different forming method was performed at $600^{\circ}C$ for 2400h using IGCC syngas atmosphere for estimation of long-term reliability of the candle filter matrix.

Physicochemical Properties of Rice-based Expanded Snacks according to Extrusion Conditions (Extrusion 제조 조건에 따른 쌀 스낵 제품의 이화학적 품질특성)

  • Eun, Jong-Bang;Hsieh, Fu-Hung;Choi, Ok-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1407-1414
    • /
    • 2014
  • Physicochemical properties of rice-based expanded snacks extruded with rice flour, high amylose starch, and isolated soy protein were investigated using a twin-screw extruder. The ingredients were extruded at various feed moisture contents (19~23%) and screw speeds (200~400 rpm) at a constant feed rate (43.4 kg/hr). Bulk density and apparent density of rice snacks were 0.06~0.21, and 0.55~0.65 respectively. Bulk density, apparent density, water absorption index, and breaking strength of rice snacks increased with increasing feed moisture content and decreasing screw speed. However, expansion and water solubility index of rice snacks increased with decreasing feed moisture content and increasing screw speed. Hunter's color L values of rice snacks was lower with increasing screw speed at feed moisture contents of 19% and 21%, but was not significantly different from a feed moisture content of 23%. On the other hand, a and b values of rice snacks were higher with increasing screw speed a feed moisture content of 19%. X-ray diffraction intensity of rice snacks decreased with decreasing feed moisture content and increasing screw speed. X-ray diffraction of rice snacks was V-type at feed moisture contents of 19% and 21% and screw speeds of 300, and 400 rpm. In the microstructure of the cross section of rice snacks, air cells in rice snacks were not well formed, and cell walls were thicker with increasing feed moisture content and decreasing screw speed.