• Title/Summary/Keyword: Extrusion die

Search Result 430, Processing Time 0.022 seconds

An Automated CAD System for Press Die Design in Cold Forging of Axisymmetric Parts (축대칭 제품을 위한 프레스 냉간단조 금형의 자동설계 기술)

  • Kim, Jong-Ho;Ryu, Ho-Yeun;Hong, Ki-Gon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.87-94
    • /
    • 1999
  • The automated die design program is developed for cold forging of axisymmetric parts which are mainly produced by forward extrusion, backward extrusion, composite extrusion and upsetting. For this study, firstly classification of forged parts and investigation of die construction type usually employed in forging industry are carried out and the most proper type from several kinds of die construction is proposed as a standardized one. Based on the die design rules summarized in the references such as handbooks, technical papers, monthly journals, etc. the automated die design program was made using AutoLISP language available in AutoCAD software of personal computer. This program interactively runs for only input data, for example, forging process, shape of forged parts, type of punch, split of die insert and design of shrinkage rings and then displays details of drawings necessary to make a forging die. When a variety of forging processes and forged parts are tested to examine the validity of this program, it was confirmed to give good results applicable to the forging die design in press shop.

  • PDF

An Analysis of the Twisting and Bending Extrusion Process of the Product with the Rectangular Section by the $ DEFORM^{TM}$-3D (사각단면을 가진 압출제품의 비틀림굽힘 압출가공법에 대한$ DEFORM^{TM}$-3D 해석)

  • 윤선홍
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.115-118
    • /
    • 1999
  • The twisting and bending extrusion process is developed by the $DEFORM^TM$-3D. Because the rectangular section of the extruded product has the symmetry line of cross-section area, the twisting and the bending of extruded product has not occurred. The product with the rectangular section is applied to the twisting and bending extrusion process through the twisted die surface and eccentricity die section. It is shown that the twisting of extruded product is caused by the twisted die surfaces and the bending of extruded product is causd by the eccentricity between the die section. The results by the analysis show that the twisting angle and the curvature of extruded products increases by the die twisting angle, the eccentricity, but decreases by the die length, and friction condition

  • PDF

Numerical Simulation of Die Characteristics for Different Dies in Film Casting Extrusion Processes

  • Kim, Ju Hyun;Kim, See Jo
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.329-338
    • /
    • 2020
  • In this study, three different die geometries were selected to understand the die characteristics in the film casting extrusion processes. First, large and small-scale T-dies were numerically simulated to observe the scaled-down effect on the flow inside the dies. Second, three different dies-keyhole, linear tapper coat-hanger die (LTCD), and curved tapper coat-hanger die (CTCD)-were numerically observed and discussed according to the mass flow rate. Finally, the die exit velocity profiles and die characteristics were observed and discussed based on the power-law index for the LTCD die. These numerical simulations and numerical data will aid the optimization of the die design in industrial fields.

The Characteristic of a Hydrostatic Extrusion of Magnesium Alloy(AZ31) - II (Mg 합금(AZ31)의 열간 정수압 압출 특성에 관한 연구(II))

  • Seo Y. W.;Jeong H. G.;Na K. H.;Yoon D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.144-147
    • /
    • 2005
  • In hydrostatic extrusion the billet in the container is extruded through a die with a liquid acting as a pressure medium, instead of by the direct application of the load by a ram. And the extrusion pressure can be affected by the flow stress and they are affected by the temperature. So in this study the temperature is the main issue with a extrusion ratio and a half die angle. As extrusion temperature goes down from $300^{\circ}C$ to $200^{\circ}C$, tensile strength goes up to 310MPa. Because velocity of extrusion is higher than the conventional extrusion, there is another characteristic in the sense of microstrure. The temperature was sotted to $300^{\circ}C,\;250^{\circ}C,\;200^{\circ}C$, respectively. There is a increase of extrusion pressure abot $15\%$.

  • PDF

Optimal Design of Dimension of Extrusion Die with Single Stress Ring (단순보강링을 갖는 압출 금형의 치수 최적설계)

  • 안성찬;임용택
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.363-370
    • /
    • 2002
  • In this study, an optimal design technique was investigated for determining appropriate dimensions of components of the die set used in the extrusion process. For this, an axi-symmetric elastic finite element program for the analysis of deformation of the shrink fitted die set was developed with the Lagrange multiplier method to implement the constraint condition of shrink fit of stress ring. By coupling the rigid-viscoplastic analysis of extrusion process by CAMPform and elastic analysis of the die set, the optimization study was made by employing optimization program DOT. Considering the various assembly conditions, optimal design was determined for a single stress ring case. It is construed that the proposed design method can be beneficial for improving the tool life of cold extrusion die set at practice.

Calculation of Contact Pressure to the Die of Axisymmetric Extrusion by Using Upper Bound Solution (축대칭 압출 공정에서 상계법을 이용한 금형 접족면압의 계산)

  • Choi Young;Yeo Hong-Tae;Hur Kwando
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.133-139
    • /
    • 2004
  • In general, the contact pressure to the die cannot be easily determined by using upper bound solution. Recently, the authors have proposed the method determining the contact pressure with the upper bound solution for the forming with the plane stain plastic deformation. In this paper, the method is applied to an axisymmetric forward extrusion process. The contact pressure to the die of the axisymmetric extrusion has been determined with the upper bound solution and compared with the result of rigid plastic FEM. The optimal semi-angles of die have been obtained minimizing the relative contact pressure to die fur the extrusion ratio.

A Study on Automatic Design Technology for Die Land of Square Dies (평금형 랜드부 설계자동화에 관한 연구)

  • 이춘만
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.63-66
    • /
    • 2000
  • This study presents development of an software for process and die design of hot extrusion through square dies. The design of extrusion dies is still an art rather than a science with increasing complexity of shape and thinness of section. Therefore most of the die design is still dependent on personal judgement intuition and experience. The objective of this study is to develop an software system which includes a design rule extracted from literatures and experts in the extrusion industry. The developed system is effectively used to design extrusion processes and dies with reduced lead time and trial extrusion.

  • PDF

Automatic Surface Generation for Extrusion Die of Non-symmetric H-and U-shaped sections (비축대칭 H-형 및 U-형상의 압출금형 곡면의 자동생성)

  • 유동진;임종훈;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.572-581
    • /
    • 2003
  • In this paper, an automatic surface construction method based on B-spline surface and scalar field theory is proposed to generate the extrusion die surface of non-symmetric H-and U-shaped sections. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u-and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections. To verify the validity of the proposed method, automatic surface generation is carried out for extrusion die of non-symmetric H-and U-shaped sections.

Minimization of Die Wear Rate by Using Multi-Objective Optimization in Three-Dimensional Extrusion Processes (3차원 압출 공정에서 다목적 최적화 기법을 이용한 금형 마모율의 최소화)

  • Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.262-265
    • /
    • 2005
  • A shape optimization of flow guide is accomplished to minimize the wear rate of die in three-dimensional flat-die extrusion processes. In order to achieve the balanced flow and the uniformed distribution of the effective strain during the extrusion, a multi-objective optimization is implemented. During the process of optimization formulation, the flow balance and the deviation of strain is considered as constrained conditions. The proposed approach is applied to an extrusion of H section. Through the optimization, it has been confirmed that the wear rate of die can be minimized satisfying the constraint.

  • PDF

Optimal Design of Dimension of Extrusion Die with Multi Stress Rings (다중보강링을 갖는 압출금형의 치수최적설계)

  • An, Sung-Chan;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2211-2218
    • /
    • 2002
  • In this study, an optimal design study has been made to determine dimensions of die and multi stress rings for extrusion process. For this purpose, a thermo-rigid-viscoplastic finite element program, CAMPform, was used fur forming analysis of extrusion process and a developed elastic finite element program fur elastic stress analysis of the die set including stress rings. And an optimization program, DOT, was employed for the optimization analysis. From this investigation, it was found out that the amount of shrink fitting incurred by the order of assembly of the die set should be taken into account for optimization when the multi stress rings are used in practice. In addition, it is construed that the proposed design method can be beneficial fur improving the tool life of cold extrusion die set.