• 제목/요약/키워드: Extrusion Distance

검색결과 30건 처리시간 0.028초

도토리묵의 물리적 특성 -Puncture test 와 Back Extrusion test- (Rheological Properties of Acorn Flour Gels - Puncture Test and Back Extrusion Test -)

  • 김영아;이혜수
    • 한국식품과학회지
    • /
    • 제17권6호
    • /
    • pp.469-473
    • /
    • 1985
  • 도토리묵의 관통검사와 Back Extrusion test를 실시하여 각각의 특징적인 force-distance curve를 구하였다. 관통검사시에 관여하는 compression force와 shear force의 기여도를 알기 위하여 $K{\acute{c}}$$K{\acute{s}}$를 계산하였다. 도토리묵의 관통에는 compression force가 훨씬 더 크게 기여하고, 도토리묵의 농도가 클수록 탐침의 지름이 커질수록 그 기여도가 더 증가하였다. Back Extrusion test에 의해 얻어지는 maximum Extrusion force는 시료량의 증감에는 변화가 없었지만, 도토리묵의 농도가 증가함에 따라서는 그 값이 증가하였다.

  • PDF

사각형 단면을 가진 제품의 압출가공시 제품의 굽힘현상에 관한 연구 (Study on the curving phenomenon of rectangular shaped product in extrusion process)

  • 진인태;최재찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.7-13
    • /
    • 1996
  • The kinematically admissible velocity field is developed for the analysis of extruded products. The curving of product in extrusion is caused by the linearly distributed longitudinal velocity on the cross-section of the workpiece at the die exit. In the analysis, the longitudinal velocity in extrusion direction is divided into the uniform velocity and the deviated velocity. In order to satisfy the requrement of the kinematically admissible velocity field, the average value of the deviated velocity should be zero. At the same time, it should linearly change with the distance form the center of gravity of the cross-section of the workpiece. The results of the analysis show that the curvature of product increses with increses in eccentricity of gravity center of the cross-section of workpiece at die entrance form that of the cross-section at the die exit. In the analysis, the longitudinal velocity in extrusion direction is divided into the uniform velocity and the deviated velocity. In order to satisfy the requrement of the kinematically admissible velocity field, the average value of the deviated velocity should be zero. At the same time, it should linearly change with the distance from the center of gravity of the cross-section of the workpiece. The results of the analysis show that the curvature of product increses with increses in ecentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-section at the die exit.

  • PDF

자동차 알루미늄 서스펜션 암 곡률압출공정에 관한 연구 (A Study on The Curvature Extrusion for Automotive Aluminum Suspension Arm)

  • 이상곤;김병민;오개희
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.71-77
    • /
    • 2009
  • In the automotive industry, aluminum is widely used to reduce the vehicle weight. Aluminum curved extruded components are used for the design of frame parts. This study investigates the curvature extrusion process to produce the aluminum curved suspension arm. In the curvature extrusion process, the bending process is simultaneously carried out with the extrusion process. Firstly, porthole extrusion was investigated by using FE analysis to produce aluminum suspension arm. And then the bending process condition was determined to produce the final suspension arm with the required curvature. In this research, the guide roll movement causes the bending of extruded product. The moving distance and velocity of guide roll were controlled to meet the required curvature of suspension arm. Finally, the curved suspension arm was manufactured by the curvature extrusion experiment under the proposed curvature extrusion condition.

원형빌렛으로부터 나선형 사다리꼴 핀을 가진 제품의 비틀림 압출가공법에 관한 연구 (A Study of the Twisting and Extrusion Process of the Product with Trapezoidal Helical Fin from the Round Billet)

  • 김한봉;진인태
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.143-151
    • /
    • 1999
  • The twisting and extrusion process of the product with trapezoidal helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted die surface connecting the die entrance section and the die exit section linearly. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is increased linearly by axial distance from the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction condition.

  • PDF

후방압출에서 펀치형상에 따른 접촉경계면의 표면부하상태 (Surface Stress Profiles at the Contact Boundary in Backward Extrusion Processes for Various Punch Shapes)

  • 노정훈;김민태;비스아라;황병복
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.565-571
    • /
    • 2009
  • This paper is concerned with the analysis on the surface stress profiles of perfectly plastic material in backward extrusion process. Due to heavy surface expansion appeared usually in the backward extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the analyses have focused to reveal the surface conditions at the contact boundary for various punch shapes in terms of surface expansion, contact pressure, and relative movement between punch and workpiece which consists of sliding velocity and distance, respectively. Punch geometries adopted in the analysis include concave, hemispherical, pointed and ICFG recommended shapes. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward extrusion process under different punch geometries. The simulation results are summarized in terms of surface expansion, contact pressure, sliding velocity and sliding distance at different reduction in height, deformation patterns, and load-stroke relationship, respectively.

이중봉 정수압 압출의 실용적 유한요소해석 모델 (A Practical Finite Element Analysis Model for Hydrostatic Extrusion of a Biaxial Bar)

  • 윤상헌;박훈재;김응주;이상목;이종섭;이근안;김용배;이용신
    • 소성∙가공
    • /
    • 제22권3호
    • /
    • pp.143-149
    • /
    • 2013
  • A new finite element model for the hydrostatic extrusion of a biaxial bar is introduced. In this model, a penalty contact algorithm, which is adopted to replace the traction boundary conditions due to the fluid in the container of the extruder, is incorporated into a consistent penalty finite element formulation for the viscoplastic deformation of a work piece during hydrostatic extrusion. Two parameters, introduced in the penalty contact algorithm in this study, a critical penalty contact pressure $P_0$ and a critical penalty contact distance $D_c$, are carefully examined for various process conditions. The proposed finite element model is applied to the hydrostatic extrusion of a Cu-clad Al bar. The extrusion loads and thickness ratios of the clad materials by the proposed model are compared in detail to values from experiments reported in the literature. Finally, it is concluded that the proposed finite element model is useful in practical implementations.

상계해법에 의한 원형빌렛으로부터 인볼루트 헬리컬핀을 가진 제품의 비틀림 압출가공법에 관한 연구 (A Study of the Twisting and Extrusion Process of the Product with Involute Helical Fin from the Round Billet by the Upper Bound Analysis)

  • 박대윤;진인태
    • 소성∙가공
    • /
    • 제10권4호
    • /
    • pp.302-310
    • /
    • 2001
  • The twisting and extrusion process of the product with involute helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted inclined die surface connecting the die enterance section and the die exit section linearly. In the analysis, the internal shear surface is defined as the curved twisted plane from the twisting of die surface and the shear work is calculated by the consumption of shear energy. The increase rate of angular velocity is determined by the minimization of plastic work. The angular velocity of die exit can be controlled by the land length and the length of inclined die. The alular velocity assums to be increased linearly by the axial distance from the die enterance to the die exit. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction constant.

  • PDF

투명조각자기의 고속 FDM 3D 프린팅을 위한 가변 압출 기법 (An Adaptive Extrusion Control Technique for Faster FDM 3D Printing of Lithophanes)

  • 장승호;홍정모
    • 한국CDE학회논문집
    • /
    • 제22권2호
    • /
    • pp.190-201
    • /
    • 2017
  • This paper proposes how to solve a problem of FDM 3D printer's irregular output when changing volume of extrusion, adjusting movement speed of the printer's head and a way to fill new inner part. Existing slicers adjust directly to change the rotation speed of the stepper. In this method, the change of the extrusion area is delayed due to the gap between the stepper and the nozzle, so that precise control is difficult. We control the extrusion area adjusting the moving speed of the print head and making constantly the rotation speed of the stepper. Thus, the output time can be shortened by generating an efficient path having a short travel distance. For evaluation, we applied our method to lithophanes with detailed variation. Comparing existing methods, our method reduced output time at least 30%.

분무성형법에 의한 Al 합금(AA2014) 대형봉상성형체 제조시 기공발생에 관한 연구 (A Study on the Creation of Porosity in Al Alloy(AA2014) Large Rod Preforms by Spray Forming)

  • 신돈수;윤의박
    • 한국주조공학회지
    • /
    • 제17권5호
    • /
    • pp.494-501
    • /
    • 1997
  • In order to manufacture large rod preforms of 2014 Al alloy with a good mechanical property by spray forming method, it was spray-formed at a droplet temperature of $715^{\circ}C$, a droplet flight distance of 400mm, and a spraying angle of $35^{\circ}$. The rod preforms were extruded at $397^{\circ}C$ with the die temperature of $420^{\circ}C$ under the hot extrusion ratio 21:1 and T6 heat treatment was performed. The 2014 Al alloys cast by hot top process were also extruded and heat-treated at the same condition as a reference material. Microstructural observation and tensile test were carried out to investigate the effects of extrusion on microstructure and mechanical property of spray-formed Al alloy. Spray-formed Al alloys had many porosities due to inappropriate process conditions such as long droplet flight distance and low droplet temperature but have fine equiaxed grain. These porosities were reduced with decreasing in grain size by hot extrusion. Ultimate tensile strength and yield strength of spray formed-extruded 2014 Al alloy were inferior to those of the normal cast-extruded 2014 Al alloy, but elongations were superior. The control of porosity was important to get spray formed preform with a good mechanical property.

  • PDF

금형 및 공정변수에 따른 층상복합재료의 압출성형 특성에 관한 연구 (A study on the extrusion forming characteristics of construction materials with die and process parameters)

  • 고병두;이하성
    • Design & Manufacturing
    • /
    • 제7권1호
    • /
    • pp.11-18
    • /
    • 2013
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. The main design parameters influencing on deformation pattern are diameter ratio of the composite components and semi-die angle. Efforts are focused on the deformation patterns, velocity gradient, predicted forming load and the end distance through the various simulations. Simulation results indicate that there is an obvious difference of forming pattern with various diameter ratio and semi-die angle. The analysis in this paper is concentrated on the evaluation of the design parameters on the deformation pattern of composite rod.

  • PDF