• Title/Summary/Keyword: Extremely low frequency-magnetic fields (ELF-MF)

Search Result 12, Processing Time 0.029 seconds

Review on the Association between Exposure to Extremely Low Frequency-Magnetic Fields (ELF-MF) and Childhood Leukemia (극저주파 자기장의 소아백혈병 발생 위험 고찰)

  • Dong-Uk Park
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.57-65
    • /
    • 2023
  • Background: The association between exposure to extremely low frequency-magnetic fields (ELF-MF) and childhood leukemia has been controversial. There is a need to clarify this relationship by summarizing key conclusions from systematic review articles. Objectives: The major aim of this study is to summarize key conclusions from systematic review articles on the association between exposure to ELF-MF and childhood leukemia based on childhood exposure to ELF-MF, proximity from childhood household to high voltage cables, and parental occupational exposure to ELF-MF. Methods: This study was conducted through a brief literature review focusing on systematic, meta-analysis, and pooled analysis methods. We conducted a literature search in PubMed using the key words "ELF-MF" and "childhood leukemia" singly or combined. Results: In 2002, the World Health Organization (WHO)'s International Agency for Research on Cancer (IARC) reviewed two manuscripts to conduct pooled analysis and concluded that there is a significant association between exposure to >0.3 μT or 0.4 μT and childhood leukemia. We found a total of four manuscripts for systematic or pool analysis that have been published since the IARC's conclusion. They consistently concluded that there was a significant association between exposure to >0.4 μT and childhood leukemia compared to ELF-MF exposure to below 0.1 μT. The proximity of children's households to high voltage cable lines and occupational exposure by their parents to ELF-MF during certain periods prior to or during pregnancy were inconsistently associated with childhood leukemia. The study found that many EU countries have implemented precautionary policies to prevent potential childhood leukemia due to exposure to ELF-MF. Conclusions: This study recommends implementing a precautionary policy that includes legal exposure limits for ELF-MF to minimize exposure to ELF-MF.

Brief Review on Exposure Characteristics, Monitoring Instruments and Threshold Limit Values for Extremely Low Frequency-Magnetic Field (ELF-MF) (직업성 극저주파 자기장 노출평가와 노출 기준에 대한 쟁점 고찰)

  • Dong-Uk, Park;Seunghee, Lee;Kyung Ehi, Zoh
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.381-392
    • /
    • 2022
  • Objectives: Objective of this study is to review briefly exposure characteristics, monitoring instruments and threshold limit values for extremely low frequency-magnetic field (ELF-MF) methods. This study was undertaken through brief literature review. We performed a literature search in PubMed to identify ELF-MF studies conducted in workplaces. Initial search keywords such as 'extremely low frequency-magnetic field (ELF-MF)' and 'electromagnetic fields (EMF)' combined or singly. We limited our review to occupational rather than general nonworkplace environmental exposures. Methods: The contents we reviewed: key industry and occupations generating ELF-MF, several direct-reading instruments monitoring ELF-MF and threshold limit values (TLV) preventing health effects may be caused by the exposure to ELF-MF. Results: The industries related to the generation and supply of electricity, electrolytic installations, welding, and induction heating and more were regarded as high ELF-MF exposure industries. All jobs handling or employed performed in power cable lines, electrical wiring, and electrical equipment are found to be exposed to ELF-MF. Threshold or ceiling limit, 1,000 µT, is established to prevent acute effects of exposure to low-frequency EMFs on the nervous system: the direct stimulation of nerve and muscle tissues and the induction of retinal phosphenes. The International Agency for Research on Cancer (IARC) has classified ELF-MF as possibly carcinogenic to humans chiefly based on epidemiological studies on childhood leukemia. However, a causal relationship between magnetic fields and several types of cancer including childhood leukemia has not been established nor has any other long-term effects. Risk management using precautionary measures, has been initiated by the US and EU to prevent chronic health effects related to ELF-MF exposure in workplaces. Conclusion: This study recommends the implementation of various measures such as theestablishment of occupational exposure limit values for ELF-MF and precautionary principle to prevent potential chronic occupational health effects may be caused by ELF-MF in Korea.

Effects of 60-Hz Magnetic Fields on DNA Damage Responses in HT22 Mouse Hippocampal Cell Lines

  • Mun, Gil-Im;Lee, Seungwoo;Kim, Nam;Lee, Yun-Sil
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.123-128
    • /
    • 2015
  • Previously, we investigated extremely low-frequency magnetic fields (ELF-MFs) on diverse DNA damage responses, such as phosphorylated H2AX (${\gamma}H2AX$), comet tail moments, and aneuploidy production in several non-tumorigenic epithelial or fibroblast cell lines. However, the effect of ELF-MF on DNA damage responses in neuronal cells may not be well evaluated. Here, we investigated the effects of ELF-MF on the DNA damage responses in HT22 non-tumorigenic mouse neuronal cells. Exposure to a 60-Hz, 2 mT ELF-MF did not produce any increased ${\gamma}H2AX$ expression, comet tail moments, or aneuploidy formation. However, 2 mT ELF-MF transiently increased the cell number. From the results, ELF-MF could affect the DNA damage responses differently, depending on the cell lines.

Influence of Exposure to Extremely Low Frequency Magnetic Field on Neuroendocrine Cells and Hormones in Stomach of Rats

  • Hong, Min-Eui;Yoon, Kyu-Hyun;Jung, Yoon-Yang;Lee, Tae-Jin;Park, Eon-Sub;Sohn, Uy-Dong;Jeong, Ji-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.137-142
    • /
    • 2011
  • Extremely low frequency magnetic fields (ELF-MF) have the ability to produce a variety of behavioral and physiological changes in animals. The stomach, as the most sensitive part of the neuroendocrine organ of the gastrointestinal tract, is crucial for the initiation of a full stress response against all harmful stress. Thus, the purpose of this study was to examine whether ELF-MF stimuli induce changes in the activity of neuroendocrine cells, considering their involvement in endocrine or paracrine effect on surrounding cells. The exposure to ELF-MF (durations of 24 h and 1 or 2 weeks, 60 Hz frequency, 0.1 mT intensity) altered the distribution and occurrence of gastrin, ghrelin and somatostatinpositive endocrine cells in the stomach of rats. The change, however, in the secretion of those hormones into blood from endocrine cells did not appear significantly with ELF-MF exposure. Comparing with sham control, ELF-MF exposure for 1 and 2 week induced an increase in $BaSO_4$ suspension propelling ratio of gastrointestinal tract, indicating that ELF-MF affects gastrointestinal motility. Our study revealed that ELF-MF exposure might influence the activity of endocrine cells, an important element of the intrinsic regulatory system in the digestive tract. The pathophysiological character of these changes and the mechanism responsible for neuroendocrine cell are still unclear and require further studies.

The effects of extremely low frequency magnetic field on bicuculline, picrotoxin, NMDA-induced seizures in mice

  • Sung, Ji-Hyun;Jeong, Ji-Hoon;Kim, Jeong-Soo;Kum, Chan;Park, Sun-Young;Sohn, Uy-Dong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.274.2-274.2
    • /
    • 2002
  • Some experiments have been reported that magnetic fields can cause the change of numerous neurotransmitters including excitatory and inhibitory transmitters, which are involved in seizures. In this study we aimed to examine the effect of extremely low frequency magnetic field (ELF-MF) on the sensitivity of seizure response to bicuculline, picrotoxin and NMDA in mice. Mouse were exposed to sham or 20 G ELF-MF for 24 hours and then convulsants were administered i.p. at various doses. (omitted)

  • PDF

Evaluation of Intensity of Extremely Low Frequency Magnetic Fields (ELF-MF) Inside of Cabins as Generated During Subway Operation (지하철 운행 중 발생하는 객차 내부 극저주파 자기장(ELF-MF) 세기 평가)

  • Lee, Jihyun;Kang, Myeongji;Park, Yunkyung;Park, Donguk;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.185-194
    • /
    • 2019
  • Objective: This study was conducted to investigate the intensity of the extremely low frequency magnetic fields(ELF-MF) generated inside of the cabins during subway operation. Methods: The ELF-MF intensity were investigated on 30 subway lines in Korea, including in the Greater Seoul Metropolitan Area(Seoul and Gyeonggi-do Province), Incheon, Busan, Daegu, Daejeon, and Gwangju. ELF-MF intensity was measured at 0.9 m from the floor using EMDEX II meters with a resolution of $0.01{\mu}T$. All data were collected every three seconds and analyzed with EMCALC 2013 version 3.0B software. Basic characteristics of subway operation, including alternative current(AC) or direct current(DC), voltage level, and opening year of the line were investigated. Real-time information during measurement, such as the time of departure, moving and arrival of trains, were also recorded. Results: The arithmetic mean(AM) and maximum(Max) intensity of ELF-MF were $0.62{\mu}T$ and $11.51{\mu}T$, respectively. Compared by region, the ELF-MF intensity measured inside cabin were the highest in the Seoul Metropolitan Area($AM=0.80{\mu}T$), followed by Busan($AM=0.30{\mu}T$), Daegu($AM=0.29{\mu}T$), Incheon($AM=0.14{\mu}T$), Gwangju($AM=0.04{\mu}T$) and Daejeon($AM=0.03{\mu}T$). The average ELF-MF level measured in AC trains($AM=1.36{\mu}T$) was also significantly higher than in DC trains($AM=0.28{\mu}T$). In terms of the opening year of the subway, trains opened before 1990($AM=0.85{\mu}T$) was the highest and the lowest was 2000-2009($AM=0.24{\mu}T$). Conclusions: The AC supply has the greatest influence on the generation of the ELF-MF intensity in subway cabins.

Study on Standardization of the Environmental Impact Evaluation Method of Extremely Low Frequency Magnetic Fields near High Voltage Overhead Transmission Lines (고압 가공송전선로의 극저주파자기장 환경영향평가 방법 표준화에 관한 연구)

  • Park, Sung-Ae;Jung, Joonsig;Choi, Taebong;Jeong, Minjoo;Kim, Bu-Kyung;Lee, Jongchun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.658-673
    • /
    • 2018
  • Social conflicts with extremely low frequency magnetic field(ELF-MF) exposures are expected to exacerbate due to continued increase in electric power demand and construction of high voltage transmission lines(HVTL). However, in current environmental impact assessment(EIA) act, specific guidelines have not been included concretely about EIA of ELF-MF. Therefore, this study conducted a standardization study on EIA method through case analysis, field measurement, and expert consultation of the EIA for the ELF-MF near HVTL which is the main cause of exposures. The status of the EIA of the ELF-MF and the problem to be improved are derived and the EIA method which can solve it is suggested. The main contents of the study is that the physical characteristics of the ELF-MF affected by distance and powerload should be considered at all stages of EIA(survey of the current situation - Prediction of the impacts - preparation of mitigation plan ? post EIA planning). Based on this study, we also suggested the 'Measurement method for extremely low frequency magnetic field on transmission line' and 'Table for extremely low frequency magnetic field measurement record on transmission line'. The results of this study can be applied to the EIA that minimizes the damage and conflict to the construction of transmission line and derives rational measures at the present time when the human hazard to long term exposure of the ELF-MF is unclear.

Effect of Extremely Low Frequency Magnetic Fields on Gene Expression in Human Mammary Epithelial MCF10A Cells

  • Hong, Mi-Na;Lee, Hyung-Chul;Kim, Bong Cho;Lee, Yun-Sil;Gimm, Yoon-Myung;Myung, Sung-Ho;Lee, Jae-Seon
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.271-279
    • /
    • 2012
  • The effects of extremely low frequency magnetic fields (ELF-MFs) on physiological processes at the cellular level remain unclear despite a number of studies. To investigate the effects of ELF-MFs on gene expression, we exposed human mammary epithelial MCF10A cells to fields of 1 mT magnetic flux density at 60 Hz for 4 and 16 h and measured the transcriptional responses of 24,000 genes using Illumina microarrays. In three independent experiments, we found no statistically significant alteration of expression levels for any of the genes assayed using a cutoff value of 1.2-fold. To confirm this result, we selected six genes with trends suggesting possible expression level changes, although these trends were not statistically significant, and investigated their expression levels further using a semiquantitative reverse-transcription polymerase chain reaction. In three independent experiments, we did not find any alterations in the expression levels of these genes. From these results, we conclude that ELF-MFs do not affect gene expression profiles under our exposure conditions.

A Study on the Extremely Low Frequency Magnetic Fields Exposure Characteristics of Workers in LCD Manufacturing Process (LCD 제조공정 종사근로자의 극저주파자기장 노출특성 연구)

  • Kim, JoonBeom;Kang, Joon Hyuk;Chung, Eun-Kyo;Jung, Kihyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.10-20
    • /
    • 2022
  • Objectives: The aim of this study is to evaluate exposure levels of the extremely low frequency magnetic fields(ELF-MF) radiated from various electric facilities in Liquid Crystal Display(LCD) manufacturing processes. Methods: This study measured the exposure levels of personal and local ELF-MF for the electronic facilities installed in two LCD manufacturing companies. Samplers were installed around workers' waist during working hours to identify personal exposure levels, and direct reading equipment were located at 3 cm, 10 cm, and 30 cm away from the surface of the electronic facilities to measure local exposure levels. Average and maximum(ceiling) values were calculated for personal and local exposure levels. Results: Average and maximum of personal exposure levels for each worker were 0.56(mean) ± 0.02(SE) µT and 6.31 ± 0.75 µT, respectively. Statistical analyses of the study found that maximum of the personal exposure levels for engineers was significantly higher than that for operators since engineers spend more time near the electronic facilities for repairing. The range of maximum personal exposure levels was 0.50 ~ 43.50 µT and its highest level was equivalent to 4.35 % of ACGIH(American Conference of Governmental Industrial Hygienists) exposure limit value(1 mT). Maximum of local exposure levels was 8.18 ± 0.52 µT and the electronic facilities with higher exposure levels were roof rail and electric panel, which were not related to direct manufacturing. The range of maximum local exposure levels was 0.60 ~ 287.20 µT and its highest level was equivalent to 28.7 % of the ACGIH exposure limit value. Lastly, the local exposure levels significantly decreased as the measurement distance from the electronic facilities increased. Conclusions: Maximum of personal and local exposure levels did not exceed the exposure limit value of ACGIH. However, it is recommended to keep the workers as far as possible from the sources of ELF-MF.

Relationship Between Urinary Melatonin Levels and Extremely Low Frequency Magnetic Fields for the Selected Primary Schoolchildren Living Nearby and Away from Overhead Transmission Power Line (송전선로 주변과 비주변 초등학생을 대상으로 극저주파 자기장 노출과 뇨중 멜라토닌 분비량간의 상관성 연구)

  • Cho, Yong-Sung;Kim, Yoon-Shin;Lee, Jong-Tae;Hong, Seung-Cheol;Jang, Seong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.191-206
    • /
    • 2004
  • The present study investigated the hypothesis that a extremely low frequency magnetic field partially suppresses the synthesis of melatonin in a group of 28 primary schoolchildren living nearby and 60 primary schoolchildren aged 12 years living far away from overhead transmission power lines from December 2003 to April 2004 in Seoul, Korea. The mean personal exposure levels of the primary schoolchildren living nearby overhead transmission power line were 0.37 ${\mu}$T, whereas the value for the primary schoolchildren living away from overhead transmission power line 0.05 mT. From simple analyses, the mean melatonin levels in the primary schoolchildren living nearby were lower than away from overhead transmission power line, but not statistically significant differences in the levels of the melatonin (p=0.2421), whereas the statistically significant differences in the levels of the melatonin related to the distance from residence to power line less and more than 100 m by cut-off point (p=0.0139). In multiple linear regression analyses, distance from residence to power line (p=0.0146) and dietary habit about burned meat (p=0.0170) proved to be significant risk factors in the mean nocturnal melatonin levels in the primary schoolchildren. In conclusion, these results demonstrate that urinary levels of nocturnal melatonin are not altered in primary schoolchildren exposed to extremely low frequency magnetic field(ELF-MF) at overhead transmission power line.