• Title/Summary/Keyword: Extreme wave

Search Result 225, Processing Time 0.026 seconds

Long Term Stability of Slopes Excavated in Weathered Granite Rock Masses Subjected to Extreme Climatic Conditions (극한 기후 조건하에서 풍화된 화강암반 절취사면에 대한 장기적 안정성 연구)

  • Yang, Kwang-Yong;Park, Yeon-Jun;You, Kwang-Ho;Woo, Ik;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.655-662
    • /
    • 2003
  • Slope stability is an important issue ill civil engineering works or in open pit mines where both economy and efficiency is required. These are the long-term stability problems which depend on the change of physical properties under a certain weather condition. These can also result in progress of weathering which can change mechanical or hydro-geological properties of rock mass considerably. In this study, weathering in nature was simulated by freeze-thaw test and Soxhlet test which represent mechanical and chemical weathering respectively. Measured were elastic wave velocities, absorption rate, volume change. Uniaxial compression strengths before and after the weathering tests were also measured. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities were clearly decreased as weathering progresses. For some class of rocks, P-wave velocity was increased probably because of the saturation due to improved connectivity of the pre-existing pores. Based on the test results, stability of the slopes were analyzed using FLAC$\^$2D/. Due to the reduced strength parameters, the factors of safety were decreased for the selected sites.

  • PDF

Using Field Programmable Gate Array Hardware for the Performance Improvement of Ultrasonic Wave Propagation Imaging System

  • Shan, Jaffry Syed;Abbas, Syed Haider;Kang, Donghoon;Lee, Jungryul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.389-397
    • /
    • 2015
  • Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of $100{\times}100mm^2$ with 0.5 mm interval) to 87.5% (scanning of $200{\times}200mm^2$ with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

Assessment of the Effect of Probabilistic Modeling of Sea-States in Fatigue Damage Calculations

  • FolsØ, Rasmus;Dogliani, Mario
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.3
    • /
    • pp.1-12
    • /
    • 1999
  • Spectral fatigue damage calculations has been performed on four ships in order to assess the effect that the probabilistic modeling of sea states has on the estimated fatigue life. The damage estimation method is based on the Miner- Palmgren fatigue damage formulation and a spectral approach is used to determine the necessary variances of the stress processes. Both the horizontal and vertical hull girder bending induced stress process together with the local water pressure induced stress process is taken into account. The wave scatter diagrams are applied in the calculations and their fatigue severity is assessed by analyzing the results obtained with the ten scatter diagrams and the four ships. All four ships are analyzed both in full load and ballast conditions and while traveling at both full and reduced speed. It is found that the fatigue severity of a wave scatter diagram is dependent on several parameters, some of these being the extreme wave hight extrapolated from the scatter diagram and the mean zero up-crossing period in conjunction with the ship length . Based on these three parameters and expression is derived in order to calculate one single number describing the fatigue severity of a scatter diagram with respect to a certain ship.

  • PDF

Numerical optimization of Wells turbine for wave energy extraction

  • Halder, Paresh;Rhee, Shin Hyung;Samad, Abdus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2017
  • The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.

An Experimental Study on Dynamic Performance of Large Floating Wave-Offshore Hybrid Power Generation Platform in Extreme Conditions (대형 부유식 파력-해상풍력 복합발전 구조물의 극한환경 운동 성능에 대한 실험적 연구)

  • Kim, Kyong Hwan;Hong, Jang Pyo;Park, Sewan;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2016
  • The present study experimentally considers dynamic performance of large floating wave-offshore hybrid power generation platform in extreme conditions. In order to evaluate the motion performance of the large floating hybrid power generation platform, 1/50 scaled model was manufactured. A mooring line was also manufactured, and free-decay and static pull-out tests were carried out to check the mooring model. A mooring line table was introduced to satisfy the water depth, and environmental conditions were checked. Motion responses in regular waves were measured and complicated environmental conditions including wave, wind, and current were applied to see the dynamic performance in extreme/survival conditions. Maximum motion and acceleration were judged following the design criteria, and maximum offset and mooring tension were also checked based on the rule. The characteristics of hybrid power generation platform are discussed based on these data.

Estimating on the Erosion and Retreat Rates of Sea-cliff Slope Using the Datum-point in Pado-ri, the Western Coast of Korea (침식기준목을 이용한 파도리 해식애 사면의 침식·후퇴율 산정)

  • JANG, Dong-Ho;PARK, Ji-Hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.71-82
    • /
    • 2012
  • This research was carried out to estimate annual erosion and retreat rates by using datum-point and to identify the characteristics and causes of seasonal variations of sea-cliff slope in Pado-ri, Taean-gun. In the result, the erosion and retreat rates of sea-cliff were increased from spring to summer. The rates were increased rapidly between August and October, caused by the effects of extreme weather events such as severe rainstorms and typhoons, etc. Since then, the erosion and retreat rates of sea-cliff were decreased gradually, but the rates were increased again in winter due to the storm surge and mechanical weathering resulting from the repeated freezing and thawing actions of bed rocks. The factors that affect erosion and retreat rates of sea-cliff include the number of days with antecedent participation and daily maximum wave height. In particular, it turned out that the erosion is accelerated by strong wave energy during storm surges and typhoons. The annual erosion and retreat rates of study area for the past two years(from May 2010 to May 2012) were approximately 44~60cm/yr in condition of differences in geomorphological and geological characteristics at each point. These erosion and retreat rates were found to be higher than results of previous researches. This is caused by coastal erosion forces strengthened by extreme weather events. The erosion and retreat process of sea-cliff in the study area is composed by denudation of onshore areas in addition to marine erosion(wave energy).

Sea Surface Temperature Time Lag Due to the Extreme Heat Wave of August 2016 (2016년 8월 폭염에 따른 표층수온의 지연시간 고찰)

  • Kim, Ju-Yeon;Han, In-Seong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.677-683
    • /
    • 2017
  • In this study, we examined responses to Sea Surface Temperature (SST) as the result of an intensive heat wave that took place in August 2016 and the cross correlation between SST and Air Temperature (AT) in August 2016. The data used included the SST of 8 ocean buoys, provided by the National Institute of Fisheries Science, and the AT of AWS near those 8 ocean buoys recorded every hour. To identify an appropriate data period, on FIR filter was applied. Two locations in the south sea were selected to be observed over similar a period, with a high correlation coefficient of about 0.8 and a time lag of about 50 hours between AT and SST. For the yellow sea, due to shallow waters and tidal currents, SST showed a rapid response caused by changes in AT. The east sea showed a negative correlation between AT and SST because of significant water depth and marine environment factors. By identifying the time lag between AT and SST, damage to aquatic organisms can be minimized, and we expect to develop a rapid response system for damage to the fishery industry caused by extreme heat waves.

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (I) - Corrections of directional spreading division and limitation on wave development of WAM model - (제3세대 파랑추산모형을 이용한 태풍매미의 극한파랑 재현 (I) - WAM 모형의 파향격자 분할법 및 파 발달 제한조건의 수정 -)

  • Shin Seung-Ho;Hong Key-yong;Choi Hark-Sun;Hashimoto Noriaki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.211-218
    • /
    • 2004
  • The WAM wave model has been widely used for wave hindcasting in the ocean by many domestic and foreign researchers due to its relative simplicity and high accuracy. As this model was originally developed for the condition cf deepwater and comparatively coarse grid size covering wide area, it might produce in a fault result mused by the improper distribution of directional spreading. We extensively investigated involved problems based on WAM Cycle 4 model and suggested the improved WAM model so that it is applicable to both shallow water sea and fine mesh wave simulation. The modified WAM model is verified here by comparing the computed result with and the observed data at Ieodo Ocean Research Station for September of 2003.

  • PDF

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (I) - Corrections of directional spreading division and limitation on wave development of WAM model - (제3세대 파랑추산모형을 이용한 태풍매미의 극한파랑 재현 (I) - WAM 모형의 파향격자 분할법 및 파 발달 제한조건의 수정-)

  • Shin, Seung-Ho;Hong, Key-Yong;Choi, Hak-Sun;Noriaki Hashimoto
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.557-564
    • /
    • 2004
  • The WAM wave model has been widely used for wave hindcasting in the ocean by many domestic and foreign researchers due to its relative simplicity and high accuracy. As this model was originally developed for the condition of deepwater and comparatively coarse grid size covering wide area, it might produce in a fault result caused by the improper distribution of directional spreading. We extensively investigated involved problems based on WAM Cycle 4 model and suggested the improved WAM model so that it is applicable to both shallow water sea and fine mesh wave simulation The modified W AM model is verified here by comparing the computed result with and the observed data at Ieodo Ocean Research Station for September of 2003.

Sea Environmental Design Criteria for Coastal and Offshore Structures

  • Liu, Defu
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.19-22
    • /
    • 1996
  • Extreme sea statistics and combinations of environmental events or response for structures are very important problem in performance evaluation and design of coastal and Offshore structures. A probabilistic method is developed that leads to the combination of Typhoon (Hurricane) or winter storm induces winds, waves, currents and surge for a generic site. The traditional recommendation for the fixed structures is a combination of the 100 years maximum wave height with the 100 years wind and current. (omitted)

  • PDF