• 제목/요약/키워드: Extreme drought

검색결과 154건 처리시간 0.032초

Extreme drought analysis using Natural drought index and Gi∗ statistic

  • Tuong, Vo Quang;So, Jae-Min;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.124-124
    • /
    • 2020
  • This study proposes a framework to evaluate extreme drought using the natural drought index and hot spot analysis. The study area was South Korea. Data were used from 59 automatic synoptic observing system stations. The variable infiltration capacity model was used for the period from 1981 to 2016. The natural drought index was constructed from precipitation, runoff and soil moisture data, which reflect the water cycle. The average interval, duration and severity of extreme drought events were determined following Run theory. The most extreme drought period occurred in 2014-2016, with 46 of 59 weather stations exhibition drought conditions and 78% exhibition extreme drought conditions. The Inje and Seosan station exhibited the longest drought duration of 6 months, and the most severe drought was 5 times higher than the extreme drought severity threshold. The hot spot analysis was used to explore the extreme drought conditions and showed an increasing trend in the middle and northeastern parts of South Korea. Overall, this study provides water resource managers with essential information about locations and significant trends of extreme drought.

  • PDF

Assessment of Water Quality Vulnerability to Extreme Drought in the Nakdong River Basin

  • Kim, Jong-Suk;Park, Seo-Yeon;Sur, Chanyang;Lee, Joo-Heon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.50-50
    • /
    • 2018
  • As the frequency of drought due to climate change is increasing and the severity of drought becomes severe, it is urgent to prepare measures against extreme drought. Despite the significant impacts of drought on the coupled human-environment system, we have not fully understood the consequences of extreme droughts affecting all parts of the environment and our communities, and there is no system to assess environmental droughts quantitatively. Even if a drought disaster occurs on the same scale, the severity of the drought depends on the vulnerability of the region. Therefore, this study proposes environmental drought assessment based on water quality vulnerability to extreme drought for the resilient proactive response.

  • PDF

Evaluating the impacts of extreme agricultural droughts under climate change in Hung-up watershed, South Korea

  • Sadiqi, Sayed Shajahan;Hong, Eun-Mi;Nam, Wan-Ho
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.143-143
    • /
    • 2021
  • Climate change indicators, mainly frequent drought which has happened since the drought of 1994, 1995, and 2012 causing the devastating effect to the agricultural sector, and could be more disruptive given the context of climate change indicators by increasing the temperature and more variable and extreme precipitation. Changes in frequency, duration, and severity of droughts will have enormous impacts on agriculture production and water management. Since both the possibility of drought manifestation and substantial yield losses, we are propositioning an integrated method for evaluating past and future agriculture drought hazards that depend on models' simulations in the Hung-up watershed. to discuss the question of how climate change might influence the impact of extreme agriculture drought by assessing the potential changes in temporal trends of agriculture drought. we will calculate the temporal trends of future drought through drought indices Standardized Precipitation Evapotranspiration Index, Standardized Precipitation Index, and Palmer drought severity index by using observed data of (1991-2020) from Wonju meteorological station and projected climate change scenarios (2021-2100) of the Representative Concentration Pathways models (RCPs). expected results confirmed the frequency of extreme agricultural drought in the future projected to increase under all studied RCPs. at present 100 years drought is anticipated to happen since the result showing under RCP2.6 will occur every 24 years, RCP4.5 every 17 years, and RCPs8.5 every 7 years, and it would be double in the largest warming scenarios. On another side, the result shows unsupportable water management, could cause devastating consequences in both food production and water supply in extreme events. Because significant increases in the drought magnitude and severity like to be initiate at different time scales for each drought indicator. Based on the expected result that the evaluating the impacts of extreme agricultural droughts and recession could be used for the development of proactive drought risk management, policies for future water balance, prioritize sustainable strengthening and mitigation strategies.

  • PDF

Future drought assessment in the Nakdong basin in Korea under climate change impacts

  • 김광섭;노반콴
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.458-458
    • /
    • 2012
  • Climate extreme variability is a major cause of disaster such as flood and drought types occurred in Korea and its effects is also more severe damage in last decades which can be danger mature events in the future. The main aim of this study was to assess the effectives of climate change on drought for an agriculture as Nakdong basin in Korea using climate change data in the future from data of General Circulation Models (GCM) of ECHO-G, with the developing countries like Korea, the developed climate scenario of medium-high greenhouse gas emission was proposed of the SRES A2. The Standardized Precipitation Index (SPI) was applied for drought evaluation. The drought index (SPI) applied for sites in catchment and it is evaluated accordingly by current and future precipitation data, specific as determined for data from nine precipitation stations with data covering the period 1980-2009 for current and three periods 2010-2039, 2040-2069 and 2070-2099 for future; time scales of 3month were used for evaluating. The results determined drought duration, magnitude and spatial extent. The drought in catchment act intensively occurred in March, April, May and November and months of drought extreme often appeared annual in May and November; drought frequent is a non-uniform cyclic pattern in an irregular repetitive manner, but results showed drought intensity increasing in future periods. The results indicated also spatial point of view, the SPI analysis showed two of drought extents; local drought acting on one or more one of sites and entire drought as cover all of site in catchment. In addition, the meteorology drought simulation maps of spatial drought representation were carried out with GIS software to generate for some drought extreme years in study area. The method applied in this study are expected to be appropriately applicable to the evaluation of the effects of extreme hydrologic events, the results also provide useful for the drought warning and sustainable water resources management strategies and policy in agriculture basins.

  • PDF

주단위 표준강수증발산지수를 활용한 2014~2015년 북한의 극한 가뭄 평가 (Assessment of the Extreme 2014~2015 Drought Events in North Korea Using Weekly Standardized Precipitation Evapotranspiration Index (SPEI))

  • 남원호;홍은미;최진용;김태곤
    • 한국농공학회논문집
    • /
    • 제59권4호
    • /
    • pp.65-74
    • /
    • 2017
  • North Korea is one of the high vulnerable countries facing the threat of natural disaster and has experienced more frequent disasters in recent years. These disasters have significantly led to food shortages and large reductions in crop yields. In 2015, both North Korean officials and international agencies had identified the extreme drought event, the worst in one hundred years according to the North Korean government. The objective of this study was an assessment of the extreme drought events in 2014~2015, and to apply climatic drought indices for drought monitoring in North Korea. Characteristics of the extreme drought in North Korea are examined by using the weekly-based Standardized Precipitation Evapotranspiration Index (SPEI). The drought characteristics illustrated by the SPEI results are compared with a Standardized Precipitation Index (SPI) results and drought impact information to understand how these indices can explain the drought conditions within the country. These results demonstrated that the SPEI could be an effective tool to provide improved spatial and temporal drought conditions to inform management decisions for drought policy.

측우기 및 미래 기후변화 시나리오 자료를 활용한 서울지역의 가뭄 위험도 분석 (Drought Risk Analysis in Seoul Using Cheugugi and Climate Change Scenario Based Rainfall Data)

  • 김지은;유지수;이주헌;김태웅
    • 대한토목학회논문집
    • /
    • 제38권3호
    • /
    • pp.387-393
    • /
    • 2018
  • 기후변화의 영향으로 극심한 가뭄에 의한 피해가 증가하고 있으며, 이러한 피해를 줄이기 위하여 극한 가뭄에 대한 정량적인 분석이 필요하다. 따라서 본 연구에서는 극한 가뭄의 위험도에 대한 정량적 분석을 위해 임계수준방법을 측우기 강우자료, 관측 강우자료, 미래 기후변화 시나리오 강우 자료에 적용하여 가뭄사상을 정의하고 가뭄의 지속기간과 심도를 도출하였다. 또한, 코플라 함수를 활용하여 가뭄 지속기간 및 심도를 동시에 고려하는 이변량 가뭄빈도해석을 실시하였다. 이변량 가뭄빈도곡선을 바탕으로 과거 현재 미래에 대한 위험도를 산정했으며, 과거 및 현재를 기준으로 미래의 극한 가뭄에 대한 위험도를 분석하였다. 그 결과 과거 및 현재에 비해 미래의 평균 가뭄 지속기간은 짧게 나타났으나 평균 가뭄 심도는 매우 크게 나타났다. 따라서 미래에는 짧은 기간의 심한 가뭄들이 발생할 것으로 예측된다. 또한, 최대가뭄의 위험도를 분석한 결과 미래의 최대 가뭄 위험도는 과거 및 현재에 비해 각각 1.39~1.94배, 1.33~1.81배 큰 것으로 확인되었다. 최종적으로 미래에서 과거 및 현재의 기왕최대 가뭄 이상의 극한 가뭄위험도는 0.989와 1.0 사이의 범위를 가지는 것으로 나타나, 미래에는 극한 가뭄의 발생확률이 높은 것으로 판단된다.

Evaluating the Spatio-temporal Drought Patterns over Bangladesh using Effective Drought Index (EDI)

  • Kamruzzaman, Md.;Hwang, Syewoon;Cho, Jaepil;Park, Chanwoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.158-158
    • /
    • 2018
  • Drought is a recurrent natural hazard in Bangladesh. It has significant impacts on agriculture, environment, and society. Well-timed information on the onset, extent, intensity, duration, and impacts of drought can mitigate the potential drought-related losses. Thus, drought characteristics need to be explained in terms of frequency, severity, and duration. This paper aims to characterize the spatial and temporal pattern of meteorological drought using EDI and illustrated drought severity over Bangladesh. Twenty-seven (27) station-based daily rainfall data for the study period of 1981-2015 were used to calculate the EDI values over Bangladesh. The evaluation of EDI is conducted for 4 sub-regions over the country to confirm the historical drought record-developed at the regional scale. The finding shows that on average, the frequency of severe to extreme drought is approximately 0.7 events per year. As a result of the regional analysis, most of the recorded historical drought events were successfully detected during the study period. Additionally, the seasonal analysis showed that the extreme droughts were frequently hit in northwestern, middle portion of the eastern and small portion of central parts of Bangladesh during the Kharif(wet) and Rabi(dry) seasons. The severe drought was affected recurrently in the central and northern regions of the country during all cropping seasons. The study also points out that the northern, south-western and central regions in Bangladesh are comparatively vulnerable to both extreme and severe drought event. The study showed that EDI would be a useful tool to identify the drought-prone area and time and potentially applicable to the climate change-induced drought evolution monitoring at regional to the national level in Bangladesh. The outcome of the present study can be used in taking anticipatory strategies to mitigate the drought damages on agricultural production as well as human sufferings in drought-prone areas of Bangladesh.

  • PDF

Development of Heat Wave Indices for Korean Peninsula

  • Chandrasekara, Sewwandhi S.K.;Kwon, Hyun-Han
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.366-366
    • /
    • 2020
  • The drought is one of the extreme natural disasters observed in any climate zone and it is due to the deficiency in moisture. The flash drought is identified recently as a subdivision of drought and it is an extreme event distinguished by sudden onset and rapid intensification of drought conditions with severe impacts. The main cause for the flash drought is coupled situation due to precipitation deficit and high evapotranspiration. Hence, heat waves plays major role in identification of flash drought. Therefore, this study focused on identifying changes in distribution of heat waves for Korean Peninsula. The daily maximum and minimum temperature data were used in this study. The heat wave, heat wave intensity and heat wave intensity index were derived. The results of the study would be an input for the future studies on identification of flash drought in Korean Peninsula.

  • PDF

이변량 빈도분석을 이용한 RCP 기후변화 시나리오에 따른 극한가뭄의 수문학적 위험도 평가 (Assessment of Hydrologic Risk of Extreme Drought According to RCP Climate Change Scenarios Using Bivariate Frequency Analysis)

  • 박지연;김지은;이주헌;김태웅
    • 대한토목학회논문집
    • /
    • 제39권5호
    • /
    • pp.561-568
    • /
    • 2019
  • 최근 우리나라는 기후변화 영향으로 극심한 가뭄으로 인한 피해가 발생하고 있다. 따라서 가뭄에 대한 완화대책을 마련하기 위해서는 가뭄 위험도의 변화를 분석할 필요가 있다. 본 연구에서는 관측 강수량 자료와 RCP 4.5 및 8.5 기후변화 시나리오에 따른 미래 강수량 자료를 활용하여 극한가뭄에 대한 수문학적 위험도를 평가하였다. 먼저, 임계수준방법으로 가뭄사상을 정의하고 풀링을 통하여 미소가뭄을 제거하여 도출한 가뭄 지속기간 및 심도를 대상으로 이변량 가뭄빈도분석을 실시하였다. 극한가뭄사상에 대한 수문학적 위험도를 산정한 결과, RCP 4.5 시나리오에서 위험도가 가장 높은 지역은 전라북도이며 과거보다 51 % 증가하였다. 또한, RCP 8.5 시나리오에서 위험도가 가장 높은 지역은 강원도이며 과거보다 47 % 증가하였다.

고기후 자료를 포함한 장기연속 강수자료에 의한 서울지역의 극한가뭄 시나리오 개발 (Developing Extreme Drought Scenarios for Seoul based on the Long Term Precipitation Including Paleoclimatic Data)

  • 장호원;조형원;김태웅;이주헌
    • 대한토목학회논문집
    • /
    • 제37권4호
    • /
    • pp.659-668
    • /
    • 2017
  • 본 연구에서는 서울지역의 극한가뭄(Extreme Drought)에 대한 통계학적 특성을 분석하기 위해서 측우기 강수량 자료(1777~1907년)와 기상청에서 관측된 강수량(1908~2015년) 자료 및 기후변화시나리오를 반영한 강수량(2011~2099년) 자료를 활용한 300년 이상의 장기 강수량 자료를 이용하여 서울지역의 가뭄특성을 분석하였다. 경향성 분석결과, 장기간에 걸쳐 연평균 강우량이 증가하는 것으로 분석되었으며, 기상학적 가뭄지수인 SPI에 대한 Wavelet transform 분석결과 측우기와 기상청자료에서 공통적으로 64~80개월(5~6년), 기후변화자료에서는 96~128개월(8~10년) 주기로 가뭄발생 주기가 길어지는 것으로 나타났다. Dry spell 분석결과에서는 고대기간에서 가뭄발생 빈도가 높은 반면, 근 현대, 미래기간에서는 발생빈도가 점차 감소하는 것으로 나타났다. 또한, 가뭄규모 분석을 통해서 서울지역의 가장 극심한 가뭄사상으로 1901년이 극심한 가뭄연도로 분석되었고, 1899~1907년이 서울지역에서 발생한 가뭄사상 중 9년 연속의 가장 극심한 연속가뭄으로 나타났다.