• 제목/요약/키워드: Extreme climate change

Search Result 390, Processing Time 0.028 seconds

Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique (GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가)

  • Kim, Chul Gyum;Park, Jihoon;Cho, Jaepil
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.

A Study on Interdisciplinary Education Model of Using Climate Change Film-Focusing on Documentary An Inconvenient Truth (기후변화 영화를 활용한 융합교육 모형연구: 다큐멘터리 <불편한 진실>을 중심으로)

  • Hwang, Young-mee;Oh, Jung-jin
    • Journal of Engineering Education Research
    • /
    • v.19 no.5
    • /
    • pp.57-64
    • /
    • 2016
  • This study is about interdisciplinary education model of using Davis Guggenheim's documentary film on global warming which is a big concern in climate change issues, An Inconvenient Truth. It based on Al Gore's slide speech. Through a course student analyzed the cause and phenomenon of global warming resulted from increase of $CO_2$ by using fossil fuel and its environmental science effects-heat wave, desertification, tornado, hurricane, sea level rise caused by melting glaciers, destroying ecosystem like habitat degradation of wild animals, for example polar bear, extreme cold wave caused by change of ocean currents- of global warming. After, student discussed of efforts to prevent global warming. This educational model is appropriate for lower grade student of environmental engineering and also available for converged majors or general education class.

Evaluation of Hybrid Downscaling Method Combined Regional Climate Model with Step-Wise Scaling Method (RCM과 단계적 스케일링기법을 연계한 혼합 상세화기법의 적용성 평가)

  • Lee, Moon Hwan;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.585-596
    • /
    • 2013
  • The objective of this study is to evaluate the hybrid downscaling method combined Step-Wise Scaling (SWS) method with Regional Climate Model (RCM) simulation data for climate change impact study on hydrology area. The SWS method is divided by 3 categories (extreme event, dry event and the others). The extreme events, wet-dry days and the others are corrected by using regression method, quantile mapping method, mean & variance scaling method. The application and evaluation of SWS method with 3 existing and popular statistical techniques (linear scaling method, quantile mapping method and weather generator method) were performed at the 61 weather stations. At the results, the accuracy of corrected simulation data by using SWS are higher than existing 3 statistical techniques. It is expected that the usability of SWS method will grow up on climate change study when the use of RCM simulation data are increasing.

Climate Change Vulnerability Assessment of Cool-Season Grasslands Based on the Analytic Hierarchy Process Method

  • Lee, Bae Hun;Cheon, Dong Won;Park, Hyung Soo;Choi, Ki Choon;Shin, Jeong Seop;Oh, Mi Rae;Jung, Jeong Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.189-197
    • /
    • 2021
  • Climate change effects are particularly apparent in many cool-season grasslands in South Korea. Moreover, the probability of climate extremes has intensified and is expected to increase further. In this study, we performed climate change vulnerability assessments in cool-season grasslands based on the analytic hierarchy process method to contribute toward effective decision-making to help reduce grassland damage caused by climate change and extreme weather conditions. In the analytic hierarchy process analysis, vulnerability was found to be influenced in the order of climate exposure (0.575), adaptive capacity (0.283), and sensitivity (0.141). The climate exposure rating value was low in Jeju-do Province and high in Daegu (0.36-0.39) and Incheon (0.33-0.5). The adaptive capacity index showed that grassland compatibility (0.616) is more important than other indicators. The adaptation index of Jeollanam-do Province was higher than that of other regions and relatively low in Gangwon-do Province. In terms of sensitivity, grassland area and unused grassland area were found to affect sensitivity the most with index values of 0.487 and 0.513, respectively. The grassland area rating value was low in Jeju-do and Gangwon-do Province, which had large grassland areas. In terms of vulnerability, that of Jeju-do Province was lower and of Gyeongsangbuk-do Province higher than of other regions. These results suggest that integrating the three aspects of vulnerability (climate exposure, sensitivity, and adaptive capacity) may offer comprehensive and spatially explicit adaptation plans to reduce the impacts of climate change on the cool-season grasslands of South Korea.

Analysis of Groundwater Recharge in Anseong River Basin under Urbanization and Future Climate Change (도시화 및 기후변화에 의한 안성천 유역의 지하수 함양량 변화 분석)

  • Woo, Soyoung;Kim, Wonjin;Chang, Sunwoo;Choi, Sijung;Kim, Chul-Gyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.483-493
    • /
    • 2024
  • This study analyzed changes in groundwater recharge due to urbanization and future climate change using the SWAT hydrological model in the Anseong river basin (1,647 km2) adjacent to the west sea of Korea. The urbanization scenario was constructed based on increasing urban density and expansion, resulting in a decrease in groundwater recharge and recharge rate by 19.9 mm and 1.77 %, respectively. Future climate change scenarios were simulated using two models representing extreme rainfall and drought, with the drought model indicating that maintaining an average recharge rate of 21.6 % would be challenging. Results from the combined scenario of urbanization and extreme drought suggest that groundwater recharge during the spring season in urban areas would be most significantly affected.

Analysis of Construction Conditions Change due to Climate Change (기후변화에 의한 건설시공환경 변화 분석)

  • Bae, Deg Hyo;Lee, Byong Ju;Jung, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.513-521
    • /
    • 2008
  • The objective of this study is the evaluation of the impact on the construction condition due to historical observation data and IPCC SRES A2 climate change scenario. For this purpose, daily precipitation and daily mean temperature data which have been observed over the past 30 years by Korea Meteorological Administration are collected and applied. Also, A2 scenarios during 2011~2040 and 2051~2080 are used for this analysis. According to the results of trend analyses on annual precipitation and annual mean temperature, they are on the increase mostly. The available working day and the day occurred an extreme event are used as correlation indices between climate factor and construction condition. For the past observation data, linear regression and Mann-Kendall test are used to analyze the trend on the correlation index. As a result, both working day and extreme event occurrence day are increased. Likewise, for the future, variation analysis showed the similar result to that of the past and the occurrence frequency of extreme events is increased obviously. Therefore, we can project to increase flood damage potential on the construction site by climate change.

Future Projection of Changes in Extreme Temperatures using High Resolution Regional Climate Change Scenario in the Republic of Korea (고해상도 지역기후변화 시나리오를 이용한 한국의 미래 기온극값 변화 전망)

  • Lee, Kyoung-Mi;Baek, Hee-Jeong;Park, Su-Hee;Kang, Hyun-Suk;Cho, Chun-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.208-225
    • /
    • 2012
  • The spatial characteristics of changes in extreme temperature indices for 2070-2099 relative to 1971-2000 in the Republic of Korea were investigated using daily maximum (Tmax) and minimum (Tmin) temperature data from a regional climate model (HadGEM3-RA) based on the IPCC RCP4.5/8.5 at 12.5km grid spacing and observations. Six temperature-based indices were selected to consider the frequency and intensity of extreme temperature events. For validation during the reference period (1971-2000), the simulated Tmax and Tmin distributions reasonably reproduce annual and seasonal characteristics not only for the relative probability but also the variation range. In the future (2070-2099), the occurrence of summer days (SD) and tropical nights (TR) is projected to be more frequent in the entire region while the occurrence of ice days (ID) and frost days (FD) is likely to decrease. The increase of averaged Tmax above 95th percentile (TX95) and Tmin below 5th percentile (TN5) is also projected. These changes are more pronounced under RCP8.5 scenario than RCP4.5. The changes in extreme temperature indices except for FD show significant correlations with altitude, and the changes in ID, TR, and TN5 also show significant correlations with latitude. The mountainous regions are projected to be more influenced by an increase of low extreme temperature than low altitude while the southern coast is likely to be more influenced by an increase of tropical nights.

  • PDF

Consideration of Time Lag of Sea Surface Temperature due to Extreme Cold Wave - West Sea, South Sea - (한파에 따른 표층수온의 지연시간 고찰 - 서해, 남해 -)

  • Kim, Ju-Yeon;Park, Myung-Hee;Lee, Joon-Soo;Ahn, Ji-Suk;Han, In-Seong;Kwon, Mi-Ok;Song, Ji-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.701-707
    • /
    • 2021
  • In this study, we examined the sea surface temperature (SST), air temperature (AT), and their time lag in response to an extreme cold wave in 2018 and a weak cold wave in 2019, cross-correlating these to the northern wind direction frequency. The data used in this study include SST observations of seven ocean buoys Real-time Information System for Aquaculture Environment provided by the National Institute of Fisheries Science and automatic weather station AT near them recorded every hour; null data was interpolated. A finite impulse response filter was used to identify the appropriate data period. In the extreme cold wave in 2018, the seven locations indicated low SST caused by moving cold air through the northern wind direction. A warm cold wave in 2019, the locations showed that the AT data was similar to the normal AT data, but the SST data did not change notably. During the extreme cold wave of 2018, data showed a high correlation coefficient of about 0.7 and a time lag of about 14 hours between AT and SST; during the weak cold wave of 2019, the correlation coefficient was 0.44-0.67 and time lag about 20 hours between AT and SST. This research will contribute to rapid response to such climate phenomena while minimizing aquaculture damage.

Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea (표준강수증발산지수를 활용한 미래 가뭄특성의 시계열 변화전망)

  • Nam, Won-Ho;Hayes, Michael J.;Wilhite, Donald A.;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.37-45
    • /
    • 2015
  • Recent droughts in South Korea have had large economic and environmental impacts across the country. Changes in rainfall and hydrologic patterns due to climate change can potentially increase the occurrence of extreme droughts and affect the future availability of water resources. Therefore, it is necessary to evaluate drought vulnerability for water resources planning and management, and identify the appropriate mitigation actions to conduct a drought risk analysis in the context of climate change. The objective of this study is changes in the temporal trends of drought characteristics in South Korea to examine drought impacts under climate change. First, the changes of drought occurrence were analyzed by applying the Standardized Precipitation Evapotranspiration Index (SPEI) for meteorological data on 54 meteorological stations, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions. These results show the high influence of climate change on drought phenomenon, and will contribute to water resources management and drought countermeasures to climate change.

Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios (SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망)

  • Kim, Song-Hyun;Nam, Won-Ho;Jeon, Min-Gi;Hong, Eun-Mi;Oh, Chansung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.