• Title/Summary/Keyword: Extreme climate change

Search Result 385, Processing Time 0.025 seconds

Analysis of Rate of Discharge Change on Urban Catchment Considering Climate Change (기후변화를 고려한 도시유역의 유출량 변화율 분석)

  • Kim, Hosoung;Hwang, Jeongyoon;Ahn, Jeonghawan;Jeong, Changsam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.645-654
    • /
    • 2018
  • Extreme rainfall events caused severe damage to human life and property due to the inundation in major urban areas. In particular, the increase in the intensity of rainfall due to climate change causes changes in the design flood discharge. As a result, it causes uncertainty in the design criteria of hydraulic structures. However, quantitative analysis results have not been provided due to the limitations of climate scenarios and the uncertainty in climate changes. Therefore, this research chose Bulgwangcheon basin as the target basin to analysis the discharge considering climate change. As the result, it is necessary to strengthen design standards since the amount of discharge increased by 14.2% even in the near future.

IPA Analysis of Agricultural Climate Adaptation Policies (농업부문 기후변화 대응정책의 IPA분석)

  • Sang-ho Lee;Jae-ho Hong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.30 no.4
    • /
    • pp.213-227
    • /
    • 2023
  • This paper aims to examine the farmers' perceptions of the importance and feasibility of climate change awareness and adaptive measures in agriculture, utilizing paired sample t-tests and Importance-Performance Analysis (IPA). Significant differences were found in farmers' views on the importance and urgency of climate change issues, with specific factors standing out. The IPA analysis identified key issues requiring sustained attention, including climate change magnitude, extreme weather events, livestock damage scale, pest fluctuations, and variability in flowering periods. Additionally, the study revealed significant disparities in farmers' perceptions of the importance and feasibility of adaptive measures, except for specific items related to heat indices.

Drought Risk Analysis in Seoul Using Cheugugi and Climate Change Scenario Based Rainfall Data (측우기 및 미래 기후변화 시나리오 자료를 활용한 서울지역의 가뭄 위험도 분석)

  • Kim, Ji Eun;Yu, Ji Soo;Lee, Joo-Heon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.387-393
    • /
    • 2018
  • Considering the effect of climate change, a quantitative analysis of extreme drought is needed to reduce the damage from extreme droughts. Therefore, in this study, a quantitative risk analysis of extreme drought was conducted. The threshold level method was applied to define a drought event using Cheugugi rainfall data in past, gauged rainfall data in present, and climate change scenario rainfall data in future. A bivariate drought frequency analysis was performed using the copula function to simultaneously consider two major drought characteristics such as duration and severity. Based on the bivariate drought frequency curves, the risks for the past, present and future were calculated and the risks for future extreme drought were analyzed comparing with the past and present. As a result, the mean drought duration of the future was shorter than that of past and present, however, the mean drought severity was much larger. Therefore short term and severe droughts were expected to occur in the future. In addition, the analysis of the maximum drought risk indicated that the future maximum drought risk was 1.39~1.94 times and 1.33~1.81 times higher than the past and present. Finally, the risk of extreme drought over past and present maximum drought in the future was very high, ranging from 0.989 to 1.0, and the occurrence probability of extreme drought was high in the future.

Climate Prediction by a Hybrid Method with Emphasizing Future Precipitation Change of East Asia

  • Lim, Yae-Ji;Jo, Seong-Il;Lee, Jae-Yong;Oh, Hee-Seok;Kang, Hyun-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1143-1152
    • /
    • 2009
  • A canonical correlation analysis(CCA)-based method is proposed for prediction of future climate change which combines information from ensembles of atmosphere-ocean general circulation models(AOGCMs) and observed climate values. This paper focuses on predictions of future climate on a regional scale which are of potential economic values. The proposed method is obtained by coupling the classical CCA with empirical orthogonal functions(EOF) for dimension reduction. Furthermore, we generate a distribution of climate responses, so that extreme events as well as a general feature such as long tails and unimodality can be revealed through the distribution. Results from real data examples demonstrate the promising empirical properties of the proposed approaches.

Prediction of Return Periods of Sewer Flooding Due to Climate Change in Major Cities (기후변화에 따른 주요 도시의 하수도 침수 재현기간 예측)

  • Park, Kyoohong;Yu, Soonyu;Byambadorj, Elbegjargal
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using generalized extreme value (GEV) distribution and Gumbel distribution models with rainfall data collected in major cities of Korea to reevaluate the return period of sewer flooding in those cities. As a result, the probable rainfall for GEV and Gumbel distribution in non-stationary state both increased with time(t), compared to the stationary probable rainfall. Considering the reliability of ${\xi}_1$, a variable reflecting the increase of storm events due to climate change, the reliability of the rainfall duration for Seoul, Daegu, and Gwangju in the GEV distribution was over 90%, indicating that the probability of rainfall increase was high. As for the Gumbel distribution, Wonju, Daegu, and Gwangju showed the higher reliability while Daejeon showed the lower reliability than the other cities. In addition, application of the maximum annual rainfall change rate (${\xi}_1{\cdot}t$) to the location parameter made possible the prediction of return period by time, therefore leading to the evaluation of design recurrence interval.

The Impact Assessment of Climate Change on Design Flood in Mihochen basin based on the Representative Concentration Pathway Climate Change Scenario (RCP 기후변화시나리오를 이용한 기후변화가 미호천 유역의 설계홍수량에 미치는 영향평가)

  • Kim, Byung Sik;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.105-114
    • /
    • 2013
  • Recently, Due to Climate change, extreme rainfall occurs frequently. In many preceding studies, Because of extreme hydrological events changes, it is expected that peak flood Magnitude and frequency of drainage infrastructures changes. However, at present, probability rainfall in the drainage facilities design is assumed to Stationary which are not effected from climate change and long-term fluctuation. In the future, flood control safety standard should be reconsidered about the valid viewpoint. In this paper, in order to assess impact of climate change on drainage system, Future climate change information has been extracted from RCP 8.5 Climate Change Scenario for IPCC AR5, then estimated the design rainfall for various durations at return periods. Finally, the design flood estimated through the HEC-HMS Model which is being widely used in the practices, estimated the effect of climate change on the Design Flood of Mihochen basin. The results suggested that the Design Flood increase by climate change. Due to this, the Flood risk of Mihochen basin can be identified to increase comparing the present status.

Accuracy Comparison of Air Temperature Estimation using Spatial Interpolation Methods according to Application of Temperature Lapse Rate Effect (기온감률 효과 적용에 따른 공간내삽기법의 기온 추정 정확도 비교)

  • Kim, Yong Seok;Shim, Kyo Moon;Jung, Myung Pyo;Choi, In Tae
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.323-329
    • /
    • 2014
  • Since the terrain of Korea is complex, micro- as well as meso-climate variability is extreme by locations in Korea. In particular, air temperature of agricultural fields is influenced by topographic features of the surroundings making accurate interpolation of regional meteorological data from point-measured data. This study was carried out to compare spatial interpolation methods to estimate air temperature in agricultural fields surrounded by rugged terrains in South Korea. Four spatial interpolation methods including Inverse Distance Weighting (IDW), Spline, Ordinary Kriging (with the temperature lapse rate) and Cokriging were tested to estimate monthly air temperature of unobserved stations. Monthly measured data sets (minimum and maximum air temperature) from 588 automatic weather system(AWS) locations in South Korea were used to generate the gridded air temperature surface. As the result, temperature lapse rate improved accuracy of all of interpolation methods, especially, spline showed the lowest RMSE of spatial interpolation methods in both maximum and minimum air temperature estimation.

Trends on Temperature and Precipitation Extreme Events in Korea (한국의 극한 기온 및 강수 사상의 변화 경향에 관한 연구)

  • Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.711-721
    • /
    • 2004
  • The aim of this study is to clarify whether frequency and/or severity of extreme climate events have changed significantly in Korea during recent years. Using the best available daily data, spatial and temporal aspects of ten climate change indicators are investigated on an annual and seasonal basis for the periods of 1954-1999. A systematic increase in the $90^{th}$ percentile of daily minimum temperatures at most of the analyzed areas has been observed. This increase is accompanied by a similar reduction in the number of frost days and a significant lengthening of the thermal growing season. Although the intra-annual extreme temperature range is based on only two observations, it provides a very robust and significant measure of declining extreme temperature variability. The five precipitation-related indicators show no distinct changing patterns for spatial and temporal distribution except for the regional series of maximum consecutive dry days. Interestingly, the regional series of consecutive dry days have increased significantly while the daily rainfall intensity index and the fraction of annual total precipitation due to events exceeding the $95^{th}$ percentile for 1901-1990 normals have insignificantly increased.

Extreme Climate Analysis and Adaptation Research on the Response of Climate Change in the Inland Region of the Korean Peninsula - Case of Deagu Metropolitan Area - (한반도 내륙 지역의 기후 변화 대응을 위한 극한기후 분석 및 적응 방안 연구 - 대구 광역시 사례를 중심으로 -)

  • Yamada, Keiko;Kim, Hae-Dong;Kim, Eun-Ji;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.773-784
    • /
    • 2020
  • In order to protect the lives and property of citizens, the central and local governments are responding by enacting municipal ordinances and regulations as the frequency of extreme weather conditions due to climate change increases and intensity increases gradually. Accordingly, the basic contents and strategies of domestic and foreign policies to cope with cold and heat waves were reviewed, referring to measures suitable for application to the Daegu metropolitan area. In addition, it is intended to provide a policy alternative to Daegu metropolitan area to minimize damage from extreme weather by identifying the current status, characteristics, and future prospects of extreme weather in Daegu metropolitan area. Since the damage caused by the cold wave in Daegu area is not as great as that of other regions, it is urgent to come up with cold wave measures for the health and transportation sectors, and to come up with measures against the heat wave as the damage caused by the heat wave is the most serious in the country. Also we will identify spatial characteristics so that the districts and counties with high vulnerability to extreme weather can be identified and implemented first, and present civic life-oriented facilities and civic action guidelines to overcome cold and heat waves.