• Title/Summary/Keyword: Extreme Value analysis

Search Result 259, Processing Time 0.023 seconds

Non-stationary statistical modeling of extreme wind speed series with exposure correction

  • Huang, Mingfeng;Li, Qiang;Xu, Haiwei;Lou, Wenjuan;Lin, Ning
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.129-146
    • /
    • 2018
  • Extreme wind speed analysis has been carried out conventionally by assuming the extreme series data is stationary. However, time-varying trends of the extreme wind speed series could be detected at many surface meteorological stations in China. Two main reasons, exposure change and climate change, were provided to explain the temporal trends of daily maximum wind speed and annual maximum wind speed series data, recorded at Hangzhou (China) meteorological station. After making a correction on wind speed series for time varying exposure, it is necessary to perform non-stationary statistical modeling on the corrected extreme wind speed data series in addition to the classical extreme value analysis. The generalized extreme value (GEV) distribution with time-dependent location and scale parameters was selected as a non-stationary model to describe the corrected extreme wind speed series. The obtained non-stationary extreme value models were then used to estimate the non-stationary extreme wind speed quantiles with various mean recurrence intervals (MRIs) considering changing climate, and compared to the corresponding stationary ones with various MRIs for the Hangzhou area in China. The results indicate that the non-stationary property or dependence of extreme wind speed data should be carefully evaluated and reflected in the determination of design wind speeds.

A Bayesian Analysis of Return Level for Extreme Precipitation in Korea (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Lee, Jeong Jin;Kim, Nam Hee;Kwon, Hye Ji;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.947-958
    • /
    • 2014
  • Understanding extreme precipitation events is very important for flood planning purposes. Especially, the r-year return level is a common measure of extreme events. In this paper, we present a spatial analysis of precipitation return level using hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitations and daily precipitation above a high threshold at 62 stations in Korea with generalized extreme value(GEV) and generalized Pareto distribution(GPD), respectively. The spatial dependence among return levels is incorporated to the model through a latent Gaussian process of the GEV and GPD model parameters. We apply the proposed model to precipitation data collected at 62 stations in Korea from 1973 to 2011.

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.

A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings

  • Jeong, Jin-A;Jin, Chung-Kuk;Lee, Jin Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.828-832
    • /
    • 2015
  • This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.

Wind loads on T-shaped and inclined free-standing walls

  • Geurts, Chris;van Bentum, Carine
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.83-94
    • /
    • 2010
  • Wind tunnel measurements on T-shaped free-standing walls and inclined free-standing walls have been carried out. Mean net pressure coefficients have been derived and compared with previous research. It was observed that the high loads at the free ends are differently distributed than those derived from the pressure coefficients for free-standing walls in EN 1991-1-4. In addition net pressure coefficients based on extreme value analysis have been obtained. The lack of correlation of the wind induced pressures at windward and leeward side result in lower values for the net pressure coefficients when based on extreme value analysis. The results of this wind tunnel study have been included in Dutch guidelines for noise barriers.

Improving the Gumbel analysis by using M-th highest extremes

  • Cook, Nicholas J.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.25-42
    • /
    • 1998
  • Improvements to the Gumbel method of extreme value analysis of wind data made over the last two decades are reviewed and illustrated using sample data for Jersey. A new procedure for extending the Gumbel method to include M-th highest annual extremes is shown to be less effective than the standard method, but leads to a method for calibrating peak-over-threshold methods against the standard Gumbel approach. Peak-over-threshold methods that include at least the 3rd highest annual extremes, specifically the modified Jensen and Franck method and the "Method of independent storms" are shown to give the best estimates of extremes from observations.

Prediction of Extreme Sloshing Pressure Using Different Statistical Models

  • Cetin, Ekin Ceyda;Lee, Jeoungkyu;Kim, Sangyeob;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • In this study, the extreme sloshing pressure was predicted using various statistical models: three-parameter Weibull distribution, generalized Pareto distribution, generalized extreme value distribution, and three-parameter log-logistic distribution. The estimation of sloshing impact pressure is important in design of liquid cargo tank in severe sea state. In order to get the extreme values of local impact pressures, a lot of model tests have been carried out and statistical analysis has been performed. Three-parameter Weibull distribution and generalized Pareto distribution are widely used as the statistical analysis method in sloshing phenomenon, but generalized extreme value distribution and three-parameter log-logistic distribution are added in this study. Additionally, statistical distributions are fitted to peak pressure data using three different parameter estimation methods. The data were obtained from a three-dimensional sloshing model text conducted at Seoul National University. The loading conditions were 20%, 50%, and 95% of tank height, and the analysis was performed based on the measured impact pressure on four significant panels with large sloshing impacts. These fittings were compared by observing probability of exceedance diagrams and probability plot correlation coefficient test for goodness-of-fit.

Wind Load Assumption of 765Kv Transmission Towers

  • Kim, Jeong-Boo
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 1996
  • This paper mainly describes the wind load assumption of 765kV transmission towers. We analyzed wind velocity data a meteorological observatories to get the wind velocity of 50 years return period by using Gumbel I type extreme value distribution. By multi-correlative regression analysis method, wind velocity at no observation site was obtained. Reference dynamics wind pressure map was obtained from above analysis and the wind pressure was classified as three regio in high temperature season.

  • PDF

Estimation and Performance Analysis of Risk Measures using Copula and Extreme Value Theory (코퓰러과 극단치이론을 이용한 위험척도의 추정 및 성과분석)

  • Yeo, Sung-Chil
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.481-504
    • /
    • 2006
  • VaR, a tail-related risk measure is now widely used as a tool for a measurement and a management of financial risks. For more accurate measurement of VaR, recently we are particularly concerned about the approach based on extreme value theory rather than the traditional method based on the assumption of normal distribution. However, many studies about the approaches using extreme value theory was done only for the univariate case. In this paper, we discuss portfolio risk measurements with modelling multivariate extreme value distributions by combining copulas and extreme value theory. We also discuss the estimation of ES together with VaR as portfolio risk measures. Finally, we investigate the relative superiority of EVT-copula approach than variance-covariance method through the back-testing of an empirical data.

Estimating quantiles of extreme wind speed using generalized extreme value distribution fitted based on the order statistics

  • Liu, Y.X.;Hong, H.P.
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.469-482
    • /
    • 2022
  • The generalized extreme value distribution (GEVD) is frequently used to fit the block maximum of environmental parameters such as the annual maximum wind speed. There are several methods for estimating the parameters of the GEV distribution, including the least-squares method (LSM). However, the application of the LSM with the expected order statistics has not been reported. This study fills this gap by proposing a fitting method based on the expected order statistics. The study also proposes a plotting position to approximate the expected order statistics; the proposed plotting position depends on the distribution shape parameter. The use of this approximation for distribution fitting is carried out. Simulation analysis results indicate that the developed fitting procedure based on the expected order statistics or its approximation for GEVD is effective for estimating the distribution parameters and quantiles. The values of the probability plotting correlation coefficient that may be used to test the distributional hypothesis are calculated and presented. The developed fitting method is applied to extreme thunderstorm and non-thunderstorm winds for several major cities in Canada. Also, the implication of using the GEVD and Gumbel distribution to model the extreme wind speed on the structural reliability is presented and elaborated.