• Title/Summary/Keyword: Extreme Process

Search Result 439, Processing Time 0.02 seconds

The Comparative Study of Software Optimal Release Time Based on Extreme Distribution Property (극값분포 특성에 근거한 소프트웨어 최적 방출시기에 관한 비교)

  • Kim, Hee-Cheul
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.43-48
    • /
    • 2011
  • Decision problem called an optimal release policies, after testing a software system in development phase and transfer it to the user, is studied. The infinite failure non-homogeneous Poisson process models presented and propose an optimal release policies of the life distribution applied extreme distribution which used to find the minimum (or the maximum) of a number of samples of various distributions. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, extreme value distribution as another alternative of existing the Poisson execution time model and the log power model can be verified using inter-failure time data.

A Proton Beam Shaping using an Extreme Aspect Ratio Micro-hole (극대세장비 마이크로 홀을 이용한 양성자 빔 집적 응용)

  • Kim, Jin-Nam;Kwon, Won-Tae;Lee, Seong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.737-744
    • /
    • 2012
  • EDM is the manufacturing process that uses the thermal energy to machine electrically conductive part. Despite a lot of research has been conducted for decades, the best aspect ratio of the micro hole using micro-EDM has not been over 30, yet. In the present study, new fabrication scheme was introduced to increase the aspect ratio of micro hole dramatically. Micro holes with less than 10 aspect ratio were aligned and welded together to manufacture a micro hole with extreme aspect ratio. Alignment of the micro hole with over 380 aspect ratio was conducted by the home-made apparatus installed with microscope and laser beam. The micro hole with extreme aspect ratio was used to shape pencil beam from proton beam generated from MC-50 cyclotron. The pencil beam was utilized to machine test specimen whose result was compared with GEANT4 computer simulation. It was shown that the experimental and simulation result were closer as the aspect ratio of the micro hole was bigger.

Optical Proximity Correction using Sub-resolution Assist Feature in Extreme Ultraviolet Lithography (극자외선 리소그라피에서의 Sub-resolution assist feature를 이용한 근접효과보정)

  • Kim, Jung Sik;Hong, Seongchul;Jang, Yong Ju;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • In order to apply sub-resolution assist feature (SRAF) in extreme ultraviolet lithography, the maximum non-printing SRAF width and lithography process margin needs to be improved. Through simulation, we confirmed that the maximum SRAF width of 6% attenuated phase shift mask (PSM) is large compared to conventional binary intensity mask. The increase in SRAF width is due to dark region's reflectivity of PSM which consequently improves the process window. Furthermore, the critical dimension error caused by variation of SRAF width and center position is reduced by lower change in diffraction amplitude. Therefore, we speculate that the margin of SRAF application will be improved by using PSM.

Effect of Surface Treatments of Polycrystalline 3C-SiC Thin Films on Ohmic Contact for Extreme Environment MEMS Applications (극한 환경 MEMS용 옴익 접촉을 위한 다결정 3C-SiC 박막의 표면 처리 효과)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.234-239
    • /
    • 2007
  • This paper describes the TiW ohmic contact characteristics under the surface treatment of the polycrystalline 3C-SiC thin film grown on $SiO_2/Si(100)$ wafers by APCVD. The poly 3C-SiC surface was polished by using CMP(chemical mechanical polishing) process and then oxidized by wet-oxidation process, and finally removed SiC oxide layers. A TiW thin film as a metalization process was deposited on the surface treated poly 3C-SiC layer and was annealed through a RTA(rapid thermal annealing) process. TiW/poly 3C-SiC was investigated to get mechanical, physical, and electrical characteristics using SEM, XRD, XPS, AFM, optical microscope, I-V characteristic, and four-point probe, respectively. Contact resistivity of the surface treated 3C-SiC was measured as the lowest $1.2{\times}10^{-5}{\Omega}cm^2$ at $900^{\circ}C$ for 45 sec. Therefore, the surface treatments of poly 3C-SiC are necessary to get better contact resistance for extreme environment MEMS applications.

Improved Margin of Absorber Pattern Sidewall Angle Using Phase Shifting Extreme Ultraviolet Mask (위상변위 극자외선 마스크의 흡수체 패턴의 기울기에 대한 오차허용도 향상)

  • Jang, Yong Ju;Kim, Jung Sik;Hong, Seongchul;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.32-37
    • /
    • 2016
  • Sidewall angle (SWA) of an absorber stack in extreme ultraviolet lithography mask is considered to be $90^{\circ}$ ideally, however, it is difficult to obtain $90^{\circ}$ SWA because absorber profile is changed by complicated etching process. As the imaging performance of the mask can be varied with this SWA of the absorber stack, more complicated optical proximity correction is required to compensate for the variation of imaging performance. In this study, phase shift mask (PSM) is suggested to reduce the variation of imaging performance due to SWA change by modifying mask material and structure. Variations of imaging performance and lithography process margin depending on SWA were evaluated through aerial image and developed resist simulations to confirm the advantages of PSM over the binary intensity mask (BIM). The results show that the variations of normalized image log slope and critical dimension bias depending on SWA are reduced with PSM compared to BIM. Process margin for exposure dose and focus was also improved with PSM.

A Novel Implementation of Rotation Detection Algorithm using a Polar Representation of Extreme Contour Point based on Sobel Edge

  • Han, Dong-Seok;Kim, Hi-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.800-807
    • /
    • 2016
  • We propose a fast algorithm using Extreme Contour Point (ECP) to detect the angle of rotated images, is implemented by rotation feature of one covered frame image that can be applied to correct the rotated images like in image processing for real time applications, while CORDIC is inefficient to calculate various points like high definition image since it is only possible to detect rotated angle between one point and the other point. The two advantages of this algorithm, namely compatibility to images in preprocessing by using Sobel edge process for pattern recognition. While the other one is its simplicity for rotated angle detection with cyclic shift of two $1{\times}n$ matrix set without complexity in calculation compared with CORDIC algorithm. In ECP, the edge features of the sample image of gray scale were determined using the Sobel Edge Process. Then, it was subjected to binary code conversion of 0 or 1 with circular boundary to constitute the rotation in invariant conditions. The results were extracted to extreme points of the binary image. Its components expressed not just only the features of angle ${\theta}$ but also the square of radius $r^2$ from the origin of the image. The detected angle of this algorithm is limited only to an angle below 10 degrees but it is appropriate for real time application because it can process a 200 degree with an assumption 20 frames per second. ECP algorithm has an O ($n^2$) in Big O notation that improves the execution time about 7 times the performance if CORDIC algorithm is used.

Two-Step Oxidation of Refractory Gold Concentrates with Different Microbial Communities

  • Wang, Guo-hua;Xie, Jian-ping;Li, Shou-peng;Guo, Yu-jie;Pan, Ying;Wu, Haiyan;Liu, Xin-xing
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1871-1880
    • /
    • 2016
  • Bio-oxidation is an effective technology for treatment of refractory gold concentrates. However, the unsatisfactory oxidation rate and long residence time, which cause a lower cyanide leaching rate and gold recovery, are key factors that restrict the application of traditional bio-oxidation technology. In this study, the oxidation rate of refractory gold concentrates and the adaption of microorganisms were analyzed to evaluate a newly developed two-step pretreatment process, which includes a high temperature chemical oxidation step and a subsequent bio-oxidation step. The oxidation rate and recovery rate of gold were improved significantly after the two-step process. The results showed that the highest oxidation rate of sulfide sulfur could reach to 99.01 % with an extreme thermophile microbial community when the pulp density was 5%. Accordingly, the recovery rate of gold was elevated to 92.51%. Meanwhile, the results revealed that moderate thermophiles performed better than acidophilic mesophiles and extreme thermophiles, whose oxidation rates declined drastically when the pulp density was increased to 10% and 15%. The oxidation rates of sulfide sulfur with moderate thermophiles were 93.94% and 65.73% when the pulp density was increased to 10% and 15%, respectively. All these results indicated that the two-step pretreatment increased the oxidation rate of refractory gold concentrates and is a potential technology to pretreat the refractory sample. Meanwhile, owing to the sensitivity of the microbial community under different pulp density levels, the optimization of microbial community in bio-oxidation is necessary in industry.

200kW Turbine Development for Organic Rankine Cycle System (200kW급 ORC용 터빈 개발)

  • Lim, Hyung-Soo;Choi, Bum-Seog;Park, Moo-Ryong;Park, Jun-Young;Yoo, Il-Su;Seo, Jeong-Min;Hwang, Soon-Chan;Yoon, Eui-Soo;Han, Sang-Jo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.107-113
    • /
    • 2013
  • This paper presents the process of turbine development for Organic Rankine Cycle(ORC) system. Development of turbine for ORC system is hot issue in the electric generation market due to the characteristic of organic refrigerant which the evaporate temperature is lower than general refrigerant. Recently, the industry have an interest about ORC turbine development in Korea, and they presented numerous research results. In developing the turbine, several processes can be considered. However, there was few document about ORC turbine development because of the trade secret. This paper can be used as a reference in developing ORC turbine.

Computer Simulation of Mo/Si Thin Film Characteristics for EUVL Technology (EUVL 응용을 위한 Mo/Si 박막 특성 전산모사)

  • Lee, Young-Tae;Chung, Yong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.807-811
    • /
    • 2002
  • In this work, we investigated the deposition behavior of Mo/Si multilayer thin film structures simulated by a PVD process simulator based on Monte Carlo method to assist the optimized fabrication of the high quality mask in EUVL(Extreme Ultra-Violet Lithography) process. The shape of simulated thin film structures turned out to be largely dependent on the gas pressure(1∼30 mTorr), the target-substrate distance(1∼30 cm) and the diffusion length(1∼10 nm). From the simulation studies, it was predicted that relatively uniform thin film structures can be fabricated by decreasing gas pressure and increasing the target-substrate distance.

Latest Transformations of XP Process Model: A Systematic Literature Review

  • Khan, Sadia;Fahiem, Muhammad Abuzar;Bakhtawar, Birra;Aftab, Shabib;Ahmad, Munir;Aziz, Nauman;Almotilag, Abdullah;Elmitwally, Nouh Sabri
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.143-150
    • /
    • 2021
  • Process model is an integral part of software industry. Different process models are used now a days in the industry for different software projects. Process models need to be tailored to address some specific project needs. Agile models are considered as the most widely used process models nowadays. They have distinctive features and the ability to address the dynamic needs of today's software development. Extreme programming (XP) is one of the extensively used agile process model especially for small projects. Many researchers have tried to mold XP to overcome its shortcomings and for better working in specific scenarios. Therefore, many customized versions of XP process model are available today. In this paper, we are going to analyze the latest customizations of XP. For this purpose, a systematic literature review is conducted on studies published from 2012 till 2018 in renowned online search libraries. This comprehensive review highlights the purpose of customizations, along with the areas in which customizations are made, and phases & practices which are being customized. This work will serve the researchers to discover the modern versions of XP process model as well as will provide a baseline for future directions for customizations.