• 제목/요약/키워드: Extreme Pressure Additives

검색결과 24건 처리시간 0.021초

윤활시스템에서 극압첨가제 조성에 따른 마모특성 연구 (A Study on the Wear Properties by EP(Extreme Pressure) Additive Composition in a Lubricated Concentrated Contact)

  • 김용석;류재환
    • Tribology and Lubricants
    • /
    • 제19권3호
    • /
    • pp.159-166
    • /
    • 2003
  • This research for replacement of chlorine or sulfur based EP(extreme pressure) -additives which is restricted materials by environmental regulation. The subject of this study is as follows, 4-ball test and friction coefficient test were experimented in accordance with temperature and velocity, compounding with several organic or inorganic metallic elements. After 4-ball test, wear area of steel ball was analysed by SEM-EDX. As the analysis, organic and inorganic elements make a effect for extreme pressure lubricity. It is shown that the friction coefficient of lubricant which includes chlorine or sulfur additives, the scoring phenomenon is found accord-ing to temperature and the scuffing phenomenon at 200$^{\circ}C$. Applying to Na, P, S, Zn, Ca based on inorganic and organic elements, the result showed that friction coefficient is decreased more and more, as increasing temperature of lubricant. The additive based on S, Cl, P elements is effect far extreme pressure in the sample#1 and Na, P, S, Zn, Ca in sample #2. These elements are environmental contaminants and S, Cl based on EP additives which are very popular in domestic industry, when they are properly composed with non-chlorine based on additives and Na, P, S, Zn, Ca organic or inorganic elements. It is showed that lubricity and excellent anti-wear properties.

기유와 극압제가 압연유의 윤활성 및 내소부성에 미치는 영향 (Influence of Base Oils and Extreme Pressure Additives on Lubricity and Anti-Seizure Property of Lubricant in Cold Rolling)

  • 한석영;송교봉;이준정
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1363-1372
    • /
    • 1992
  • 본 연구에서는 고속 냉간 압연유를 개발하기 위한 기초 연구로써 압연유의 기본이 되는 기유의 종류와 압연유에 첨가되는 각종 첨가제중 고속, 고압하 압연에서 가장 문제가 되는 히트 스크래치를 방지하는 역할을 하는 극압제의 종류 및 함량이 압연유의 윤활성과 내소부성에 어떠한 영향을 주는가를 소다식 진자형 마찰계수 시험 기, Falex 시험기 그리고 Four Ball 시험기와 같은 실험실적 평가방법과는 달리 실제 롤과 스트립 사이의 접촉조건이 상사한 시험압연기를 사용한 윤활성 및 내소부성 평가 실험을 통하여 검토하였다. 본 평가 실험에 사용된 시험압연기는 압하배분, 압연 채 터링(chattering), 장력 제어, 압연윤활 특성, 압연재 형상 제어, 이주속 압연특성 등 을 시험할 수 있는 다목적 냉간압연기로써 그 구조와 제원을 Fig.1과 Table 1에 나타 내었다. 또한 극압제를 함우하고 있는 압연유와 스트립 표면간의 화학반응에 의한 극압막의 존재여부를 확인하기 위하여 EDS(energy dispersive spectrometer) 분석법과 ESCA (electron spectroscopy for chemical analysis) 분석법을 이용하여 분석하였다.

윤활유 첨가제에 따른 마멸분 화상해석

  • 서영백;이충엽;박홍식;전태옥
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.180-189
    • /
    • 1998
  • This paper was undertaken to do shape analysis of wear debris on oiliness agent and extreme pressure agent. The lubricating wear test was performed under different experimental conditions using the wear test device was made in our laboratory and were- specimens of the pin on disk type was rubbed in paraffine series base oil by materials, varying applied load, sliding distance, oil additives such as stearine acid, DBDS, TCP. The four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) on a kind of the additives are different on applied load and sliding distance and Its are affected by absorbed film and reaction film. DBDS and TCP have a role of extreme pressure agent but a role of absorbed film of stearic acid decrease in high load. The maximum wear volume on applied load be in existence in three kinds of the specimens because of reaction characteristics of the additives.

  • PDF

자동차 기어오일의 혼합첨가제 첨가에 따른 트라이볼로지 특성에 관한 연구 (A Study on the Tribological Characteristics of Automobile Gear Oil with Addition of Compound Additives)

  • 최낙정;윤석범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.557-562
    • /
    • 2008
  • In this paper, experiments have been performed for the investigation of tribological characteristics of automobile gear oil with the addition of ZDDP and DEP by using the FALEX WEAR TEST MACHINE. The results are as follows. The wear characteristics of gear oil was improved by adding compound additives. The extreme pressure of gear oil increases and then decreases with the applied load. The maximum extreme pressure of gear oil with compound additive is bigger then that of pure gear oil. The friction coefficient of pure gear oil monotonically increases with the temperature, but that of gear oil mixed with the additives decreases at the high temperature.

윤활유 성질이 마모특성에 미치는 영향(제2보) (Effects of Tribological Characteristics on Lubricants Properties (The 2nd))

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.335-340
    • /
    • 2001
  • It was reviewed that the kinds of lubricating oil, viscosity, temperature and strength of materials affected the wear of the surface heat treatment. When lubricants is used under severe running conditions, their tribological characteristics are very important. We have studied the lubricating oil viscosity, kinds of additives and their amounts, and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. It was shown from the test results that wear is not greatly affected by the amount of ZnDTP (Zinc dialkyl dithio phosphate) antiwear agent, but EP (Extreme pressure) additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its temperature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the lower the scratch of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

MTM OIL의 변속성능과 내구성에 대한 연구 (A Study for Shift Qulity and Durability of Manual Transmission Oil)

  • 차상엽;양시원
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.185-190
    • /
    • 2003
  • Synchronizer ring performance is strictly required in order to extend manual transmission oil drain interval. Zn type additive, which is used as dispersant and anti-wear additive instead of SP additives in manual transmission oil, is applied to improve Synchronizing function and durability. But only Zn type additive is not suitable for high torque transmission because it has not good extreme pressure characteristics. We research on the synchronizer friction and extreme pressure properties in according to change additive types. As a result, it was found that the use of non-active extreme pressure and friction modifier additives has benefit in the improvement of synchronizer friction characteristics and durability.

  • PDF

Study on Tribo-chemistry Properties of Some Additives on Base Oils of Friendly Environmentally Lubricants

  • Bin, Ye;De-hua, Tao
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.263-264
    • /
    • 2002
  • The tribological characteristic of several environmentally friendly lubricating base stocks was examined, and the effect of some commonly used additives on th tribological behavior of the lubricating oils was comparatively investigated on a four-ball machine. It has been found that the commercial additives including butene sulfide, wax chloride, zinc dialkyldithiophosphate and ashless P-N type agent helped to improve the friction-reducing and antiwear properties as well as the extreme pressure behavior. Non-toxic nanoscale $(CF)_x$ showed the best friction-reducing ability, though it registered relatively poor extreme pressure properties. The mechanism on friction of nano-scale material is discussed.

  • PDF

유성제 및 극압 첨가제에 따른 마멸입자 형상해석 (Morphological Analysis of Wear Particles in the Lubricating Oil with Additives)

  • 이충엽;조연상;서영백;박흥식;전태옥
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.79-87
    • /
    • 1998
  • Morphological analysis of wear particles in the lubricating oil is a very effective and versatile means of lubricant analysis for machine condition monitoring and fault diagnosis. The prospects for determining quantitative information about wear particle morphology have been considerably enhanced by recent developments reported in the application of image processing and analysis techniques. This study was undertaken to investigate the influence of oiliness agent and extreme pressure agent on the shape of wear particles. The wear test was performed under different experimental conditions with stearic acid, dibenzyl disulfide(DBDS) and tricresol phosphate(TCP) in paraffinic base oil. Wear particles characteristics were described using four shape parameters, namely 50% volumetric diameter, aspect, roundness and reflectivity. The results showed that the four shape parameters of wear particles depend on a kind of the additives. This analysis of wear debris with computer image processing techniques is sufficient to distinguish some types of wear debris. The wear volume of three kinds of the specimens are affected by the additives with boundary films.

윤활유 성질이 마모특성에 미치는 영향(제1보) (Effects of Tribological Characteristics on Lubricants Properties (The 1st))

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • 제14권2호
    • /
    • pp.57-62
    • /
    • 1998
  • When lubricants is used under severe running conditions, their tribological characteristics are very important. We have studied the lubricating oil viscosity, kinds of additives and their amounts, and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. Moreover, the temperatures of three kinds of oils which have very different viscosities at room temperature, were varied between 6$0^{\circ}C$ and 115$^{\circ}C$ while the oil viscosity was unchanged. It was shown from the test results that surface wear is not greatly affected by the amount of ZnDTP (Zinc dialkyl dithio phosphate) antiwear agent, but EP (Extreme pressure) additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its temperature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the wider the scratching of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.