• 제목/요약/키워드: Extreme Heat

검색결과 254건 처리시간 0.026초

영-과잉 회귀모형을 활용한 폭염자료분석 (Heat-Wave Data Analysis based on the Zero-Inflated Regression Models)

  • 김성태;박만식
    • Journal of the Korean Data Analysis Society
    • /
    • 제20권6호
    • /
    • pp.2829-2840
    • /
    • 2018
  • 음이 아닌(non-negative) 측정값을 가지는 확률변수에 있어서, 영(0)이 과도하게 측정되는 자료를 반연속형(semi-continuous) 자료와 영-과잉(zero-inflated) 자료로 구분한다. 이러한 자료에서는 특정 확률 분포(probability distribution) 하에서의 확률보다 훨씬 큰 확률로 0을 관측하게 되는데, 연속형(continuous) 확률분포를 고려하는 경우에는 반연속형으로, 이산형(discrete) 확률분포를 고려하는 경우에는 영-과잉이라고 한다. 본 연구에서는 경계값(0)의 측정 여부에 관한 모형과 0보다 큰 확률변수에 대한 확률분포를 활용한 모형 등 두 개의 부문으로 이루어진 모형, 즉 2-부문 모형(two-part model)을 소개하고자 한다. 특히, 이산형 확률분포 중 포아송 분포와 음이항 분포를 고려한 영-과잉 회귀모형(regression model)을 설명하고 그 특성을 파악하고자 한다. 실증연구에서는 이러한 영-과잉 회귀모형을 활용하여 지난 10년(2009년부터 2018년) 간 한국의 여름철(6-8월) 폭염주의보(heat-wave advisory) 및 폭염경보(heat-wave warning) 발생일수를 적합하였다. 또한 공간예측기법 중 하나인 범용크리깅(universal kriging)을 이용하여 적합결과를 바탕으로 한 폭염 발생일수에 대한 예측지도를 작성하였다.

Early age behavior analysis for reinforced concrete bridge pier

  • Wang, Xianfeng;Li, Dawang;Han, Ningxu;Xing, Feng
    • Computers and Concrete
    • /
    • 제18권5호
    • /
    • pp.1041-1051
    • /
    • 2016
  • In this study, the construction of a reinforced concrete bridge pier was analyzed from durability point of view. The goal of the study is to analyze the crack iniation condition due to construction and present some recommendations for construction conditions of the reinforced concrete bridge pier. The bridge is located at the western port area of Shenzhen, where the climate is high temperature and humidity. To control the cracking of concrete, a construction simulation was carried out for a heat transfer problem as well as a thermal stress problem. A shrinkage model for heat produced due to cement hydration and a Burger constitutive model to simulate the creep effect are used. The modelling based on Femmasse(C) is verified by comparing with the testing results of a real underground abutment. For the bridge pier, the temperature and stress distribution, as well as their evolution with time are shown. To simulate the construction condition, four initial concrete temperatures ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$) and three demoulding time tips (48h, 72h, 96h) are investigated. From the results, it is concluded that a high initial concrete temperature could result in a high extreme internal temperature, which causes the early peak temperature and the larger principle stresses. The demoulding time seems to be less important for the chosen study cases. Currently used 72 hours in the construction practice may be a reasonable choice.

임플란트 지대주 삭제시의 발생열에 관한 연구 (A Study on the heat generation during implant abutment preparation)

  • 이호진;송광엽;장태엽
    • 구강회복응용과학지
    • /
    • 제19권1호
    • /
    • pp.27-33
    • /
    • 2003
  • Excessive heat generation at the implant-bone interface may cause irreversible bone damage and loss of osseointegration. The effect of heat generation in vitro at the implant surface caused by abutment reduction with high-speed dental turbine was examined. Titanium-alloy abutments connected to a titanium alloy screw-implant embedded in an acrylic-resin block in a $37^{\circ}C$ water bath were prepared. Temperature changes were recorded via embedded thermocouples at the cervix and apex of the implant surface. Analysis of variance for repeated measures was used to compare seven treatment groups. Fifty seconds of continuous cutting with air and water coolant caused a mean temperature increase of $1.24^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Similar intermittent cutting caused increase of $2.50^{\circ}C$ at apex and $1.64^{\circ}C$ at cervix. But, continuous cutting with air coolant caused a mean temperature increase of $6.47^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Similar intermittent cutting caused increase of $6.47^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Preparation of implant abutment does not lead to detrimental effect on peri-implant tissues provided that adequate cooling. However, without water cooling, extreme overheating could be provoked, reaching the critical temperature that would lead to irreversible bone damage within only a few seconds.

내페이드와 힐스타트 가상 시험을 통한 수동변속기 클러치 시스템의 온도 예측에 관한 연구 (A Study of Temperature Predictions for Manual Transmission Clutch System via Anti-fade and Hill Start Virtual Test)

  • 박기종;김동원
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.122-129
    • /
    • 2015
  • Excessive overheating to a manual transmission clutch system under operating conditions can be considered the main reason of its performance degradation. The clutch system has to be ensured with its service life by showing that it passes the extreme tests called anti-fade test and hill start test in a certain design step. In general, design feedbacks from these kinds of the experiments are adapted to the system to enhance its performance. However, it usually takes much time and costs a lot due to the repetition of the tests. In this research, a process to calculate temperature of the clutch system was developed to determine whether the design can be passed the anti-fade test and hill start test in the design phase. The process incorporates many CAE techniques such as heat transfer analysis using 1D dynamic simulation method, system dynamics, CFD and parametric optimization. CFD is utilized to analyze 3-dimensional heat transfer of the clutch system and fluid dynamics of air in the clutch housing. The process was applied for the clutch systems in several vehicle models. The results was compared with those of the experiment. The applicability of the developed process was verified by comparing the predicted results with experimental results.

K-평균 군집분석을 이용한 동아시아 지역 날씨유형 분류 (Classification of Weather Patterns in the East Asia Region using the K-means Clustering Analysis)

  • 조영준;이현철;임병환;김승범
    • 대기
    • /
    • 제29권4호
    • /
    • pp.451-461
    • /
    • 2019
  • Medium-range forecast is highly dependent on ensemble forecast data. However, operational weather forecasters have not enough time to digest all of detailed features revealed in ensemble forecast data. To utilize the ensemble data effectively in medium-range forecasting, representative weather patterns in East Asia in this study are defined. The k-means clustering analysis is applied for the objectivity of weather patterns. Input data used daily Mean Sea Level Pressure (MSLP) anomaly of the ECMWF ReAnalysis-Interim (ERA-Interim) during 1981~2010 (30 years) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Using the Explained Variance (EV), the optimal study area is defined by 20~60°N, 100~150°E. The number of clusters defined by Explained Cluster Variance (ECV) is thirty (k = 30). 30 representative weather patterns with their frequencies are summarized. Weather pattern #1 occurred all seasons, but it was about 56% in summer (June~September). The relatively rare occurrence of weather pattern (#30) occurred mainly in winter. Additionally, we investigate the relationship between weather patterns and extreme weather events such as heat wave, cold wave, and heavy rainfall as well as snowfall. The weather patterns associated with heavy rainfall exceeding 110 mm day-1 were #1, #4, and #9 with days (%) of more than 10%. Heavy snowfall events exceeding 24 cm day-1 mainly occurred in weather pattern #28 (4%) and #29 (6%). High and low temperature events (> 34℃ and < -14℃) were associated with weather pattern #1~4 (14~18%) and #28~29 (27~29%), respectively. These results suggest that the classification of various weather patterns will be used as a reference for grouping all ensemble forecast data, which will be useful for the scenario-based medium-range ensemble forecast in the future.

기후변화와 이상기상 발생의 현황과 미래 (Overview of Climate Change and Unusual Regional Climate and the Future)

  • 문승의
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2000년도 추계 학술대회지
    • /
    • pp.3-11
    • /
    • 2000
  • The Asian summer monsoon has a profound social and economic impact in East Asia and its surrounding countries. The monsoon is basically a response of the atmosphere to the differential heating between the land mass of the Asian continent and the adjacent oceans. The atmospheric response, however, is quite complicated due to the interactions between the atmospheric heat sources, land-sea contrast, and topography, The occurrence of extreme summertime floods in Korea, Japan, and China in 1998 and 1999 has highlighted the range of variability of the East Asian summertime monsoon circulation and spurred interest in investigating the cause of such extreme variability. While ENSO is often considered a prime mechanism responsible for the unusual hydrological disasters in East Asia, understanding of the connection between ENSO and the East Asian monsoon is hampered by their dynamic complexities. Along with a recent phenomenon of weather abnormalities observed in many parts of the globe, Korea has seen its share of increased weather abnormalities such as the record-breaking heavy rainfalls due to a series of flash floods in the summers of 1998 and 1999, following devastating Yangtze river floods in China. A clear regime shift is found in the tropospheric mean temperature in the northern hemisphere middle latitudes and the surface temperature over the Asian continent during the summer with a sudden warming since 1977. Either decadal climate variation or climate regime shift in the Asian continent is evident and may have altered the characteristics of the East Asian summer monsoon. Considering the summertime rainfall amount in Korea is overall increased lately, the 1998/99 heavy rainfalls may not be isolated episodes related only to ENSO, but could be a part of long-term climate variation. The record-breaking heavy summer rainfalls in Korea may not be direct impact of ENSO. Instead, the effects of decadal climate variation and ENSO may be coupled to each other and also to the East Asian summer monsoon system, while their individual impacts are difficult to separate.

  • PDF

이동원(李東垣) 『비위론(脾胃論)』에 담겨 있는 생리기반이론 (Basic Principles of the 『Spleen-stomach theory』 by Li Dong-yuan)

  • 최희윤;김광중
    • 동의생리병리학회지
    • /
    • 제24권6호
    • /
    • pp.911-920
    • /
    • 2010
  • The basic principles in the "Spleen-stomach theory(脾胃論)" sets up the phases and roles of spleen-stomach (脾胃) by establishing Earth(地 坤 土) and exposing the reality of spleen-stomach(脾胃) of human body which has its own shape and form with Heaven's reality exhibited. The meaning of Earth is based on the constant meaning of Earth in 'Earth Original-Earth as extended and stable ground(坤元一正之土)' giving form and shape, and Earth's movement with circulation, then exposes itself as 'Earth as plowing land(耕種之土)' concerning both the application of Five Phases and the physical characteristics of Earth. The Yin-Yang recognition on Earth is revealed as Yin Earth(陰土)-Yang Earth(陽土). Spleen(脾) was established as Yin Earth(陰土) and Stomach(胃) as Yang Earth(陽土). The seasonal assignment of Earth is Indian Summer(長夏), which is divided from Summer, and becomes Heat(熱), and the Yin-Yang recognition of Earth comes to be the meaning of the center and border. According to the Five Phasic recognition, it becomes Earth(土) and gets to be Dampness(濕) in accordance with Six Qi(六氣). 'Extreme Yin(至陰)' indicates Qi's status exposing the fundamental meaning regarding the role of creating, changing, and propelling Spleen-Stomach(脾胃) as a characteristic Yin Earth. Earth comprehends 'Four Courses(四維)' meaning, recognizes them as four parts of the 12 Earth's Branches(辰戌丑未) and the terminals of four seasons(四季之末), and has the meaning of the president of the change in four seasons. The theory of principle in the "Spleen-stomach theory(脾胃論)" stands on the basis of the 'Form Qi theory(形氣論)' and that of 'Upbearing, Downbearing, Floating, and Sinking theory(升降浮沈論)'. It manifests the theory of movement in the interaction between Form(形) and Qi(氣), and 'Qi Interior Form Exterior(氣裏形表)' indicates that Qi(氣) moves interiorly and Form(形) exteriorly.

2018년 8월 1일 홍천에서의 기록적인 고온 사례(41.0℃)에 영향을 준 푄 바람 (Effect of Foehn Wind on Record-Breaking High Temperature Event (41.0℃) at Hongcheon on 1 August 2018)

  • 김석환;이재규;김유진
    • 대기
    • /
    • 제31권2호
    • /
    • pp.199-214
    • /
    • 2021
  • A record-breaking high surface air temperature of 41.0℃ was observed on 1 August 2018 at Hongcheon, South Korea. In this study, to quantitatively determine the formation mechanism of this extremely high surface air temperature, particularly considering the contributions of the foehn and the foehnlike wind, observational data from Korea Meteorological Administration (KMA) and the Weather Research and Forecasting (WRF) model were utilized. In the backward trajectory analysis, trajectories of 100 air parcels were released from the surface over Hongcheon at 1600 LST on 1 August 2018. Among them, the 47 trajectories (38 trajectories) are tracked back above (below) heights of 1.4 km above mean sea level at 0900 LST 31 July 2018 and are defined as upper (lower) routes. Lagrangian energy budget analysis shows that for the upper routes, adiabatic heating (11.886 × 103 J kg-1) accounts for about 77% of the increase in the thermal energy transfer to the air parcels, while the rest (23%) is diabatic heating (3.650 × 103 J kg-1). On the other hand, for the lower routes, adiabatic heating (6.111 × 103 J kg-1) accounts for about 49% of the increase, the rest (51%) being diabatic heating (6.295 × 103 J kg-1). Even though the contribution of the diabatic heating to the increase in the air temperature rather varies according to the routes, the contribution of the diabatic heating should be considered. The diabatic heating is caused by direct heating associated with surface sensible heat flux and heating associated with the turbulent mixing. This mechanism is the Type 4 foehn described in Takane and Kusaka (2011). It is concluded that Type 4 foehn wind occurs and plays an important role in the extreme event on 1 August 2018.

2016년 서울과 부산지역 폭염특보 정보의 경제적 가치 평가 -폭염대책 비용과 환자 자료를 중심으로- (Evaluating Economic Value of Heat Wave Watch/Warning Information in Seoul and Busan in 2016: Focused on a Cost of Heat Wave Action Plan and Sample of Patients)

  • 김인겸;이승욱;김혜민;이대근
    • 한국콘텐츠학회논문지
    • /
    • 제20권5호
    • /
    • pp.525-535
    • /
    • 2020
  • 본 연구의 목적은 공공부문에서 활용되는 기상청의 여름철 폭염특보 정보의 가치를 평가하는 것이다. 폭염특보는 각 지방자치단체에서 매년 발생하는 고온 피해를 저감하기 위한 대비계획의 행동 수준을 결정하는 주요 투입변수로 활용되고 있다. 비 시장재인 폭염특보 정보의 가치를 평가하기 위해 비용-손실을 고려한 의사결정모델을 수립하였다. 의사결정모델 변수인 비용과 손실은 각각 서울과 부산에서 2016년 사용한 폭염 대책 예산과 건강보험심사평가원이 제공하는 65세 이상 고령자의 건강보험 청구금액으로 설정하였다. 분석 결과 2016년 기상청 폭염특보는 서울과 부산에 각각 41.3억 원과 10.9억 원의 가치를 제공한 것으로 평가되었다. 또한 기상청이 폭염특보의 False Alarm (FA) 오류를 1회 줄이면 서울과 부산에서 각각 76.6백만 원, 16.8백만 원의 가치가 증가하는 것으로 나타났다. 연구 결과는 공공부문에서 활용되는 폭염특보의 가치를 정량적으로 추정한데 의의가 있다.

여름철 택지개발지역의 열쾌적성에 관한 연구 (A Study on Human Thermal Comfort of Residential Development Districts in Summer Season)

  • 공학양;최낙훈;박성애;이종천;박수국
    • Ecology and Resilient Infrastructure
    • /
    • 제5권4호
    • /
    • pp.219-228
    • /
    • 2018
  • 본 연구는 수원시 호매실 택지개발지구를 대상으로 토지피복지도와 도시기후 유형 분류 방법인 Local Climate Zone (LCZ)을 활용하여 기후적 특성에 따라 도시지역을 세분화하고, 각각의 지역에 대한 여름철 폭염 시 열환경 특성을 확인하고자 하루 중 가장 더운 낮 시간의 열쾌적성을 측정했다. 측정 결과 산림과 논은 중간 열스트레스 값을, 도시공원은 강한 열스트레스 값을 나타냈으며, 기타 시가화 지역은 극한 열스트레스 값을 나타냈다. 이러한 결과는 도시지역의 유형별 기후적 특성과 차이를 확인하고, 도시계획 수립 시 계획단계에서부터 폭염을 대비한 토지이용의 구상 및 그린인프라의 효율적인 배치를 통해 열환경 개선을 위한 정책적 활용 가능성이 있음을 보여주었다.