• Title/Summary/Keyword: Extreme Design Load

Search Result 120, Processing Time 0.024 seconds

Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.559-575
    • /
    • 2016
  • In order to investigate the influence of different blade positions on aerodynamic load and wind loads and load-effects of large scale wind turbine tower under the halt state, we take a certain 3 MW large scale horizontal axis three-blade wind turbine as the example for analysis. First of all, numerical simulation was conducted for wind turbine flow field and aerodynamic characteristics under different halt states (8 calculating conditions in total) based on LES (large eddy simulation) method. The influence of different halt states on the average and fluctuating wind pressure coefficients of turbine tower surface, total lift force and resistance coefficient, circular flow and wake flow characteristics was compared and analysed. Then on this basis, the time-domain analysis of wind loads and load-effects was performed for the wind turbine tower structure under different halt states by making use of the finite element method. The main conclusions of this paper are as follows: The halt positions of wind blade could have a big impact on tower circular flow and aerodynamic distribution, in which Condition 5 is the most unfavourable while Condition 1 is the most beneficial condition. The wind loads and load-effects of disturbed region of tower is obviously affected by different halt positions of wind blades, especially the large fluctuating displacement mean square deviation at both windward and leeward sides, among which the maximum response occurs in $350^{\circ}$ to the tower top under Condition 8; the maximum bending moment of tower bottom occurs in $330^{\circ}$ under Condition 2. The extreme displacement of blade top all exceeds 2.5 m under Condition 5, and the maximum value of windward displacement response for the tip of Blade 3 under Condition 8 could reach 3.35 m. All these results indicate that the influence of halt positions of different blades should be taken into consideration carefully when making wind-resistance design for large scale wind turbine tower.

Probabilistic Analysis of Equivalent Uniformly Distributed Live Loads (등가등분포 적재하중의 확률론적 분석)

  • 김상효;정시현;조형근
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 1989
  • Since 1960's, structural engineers have recognized that the inherent random nature of loadings and materials as well as the imperfect structural analysis may be important factors in the structural safety evaluation. Based on the successful developments of the reliability-based structural analysis and design, the design criteria of the standards are recently developed(or modified) in the light of the probabilistic concepts. To develop the probability - based criteria for the domestic buildings, the probabilistic characteristic of loadings acting on structures should be defined first. In this study, therefore, live load data on apartment buildings have been collected and analyzed in systematic manner, and their probabilistic characteristics have been studied. Based on the results, the lifetime extreme values are computed and compared with current design loads. More rational design loads are suggested, which are more consistent in the probabilistic concepts.

  • PDF

An Experimental Study on the Characteristics of Seismic Isolators under Extreme Conditions (교량 지진격리받침의 극한특성에 대한 실험적 고찰)

  • Kwahk, Im-Jong;Yoon, Hye-Jin;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.105-108
    • /
    • 2008
  • For the early seismic isolation design in Korea, foreign products of isolation bearings were used. But these days, the application of domestic products of isolation bearings is increasing. However various experimental studies can be found very seldom on the extreme and lonr term behaviors of isolation bearings. In this study, we considered the laminated rubber type isolation bearings that have many application cases in Korea and we evaluated their shear strength, long term characteristics such as aging and creep affecting shear strength of bearings in long term period. For the reality of experiments, fabricated isolation bearing specimens are designed for a real structure and shear loading was applied under design compressive loads. To evaluated aging effect, the specimens were exposed to high temperature environment for certain period and their shear properties were measured to compare with their original values. Also we measured creep amount of isolation bearings under constant compressive load for 1,000 hours and estimated creep amount after 60 years compatible with general life cycle of bridges.

  • PDF

Structural Design of a 750kW Composite Wind Turbine Blade (750kW급 풍력발전기용 복합재 블레이드의 구조설계)

  • Jung C.K.;Park S.H.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.18-21
    • /
    • 2004
  • A GFRP based composite blade was developed for a 750kW wind energy conversion system of type class I. The blade sectional geometry was designed to have a general shell-spar structure. The load cases specified in the IEC61400-1 international specification were considered. For withstanding all relevant extreme loads, the structural analysis for the complete blade was performed using a commercial FEM code. The static load carrying capacity, buckling stability, blade tip deflection and natural frequencies at various rotational speeds were evaluated to satisfy the strength requirements in accordance with the IEC61400-1 and GL Regulations. For designing a lightweight blade, the thickness and the lay-up pattern of the skin-foam sandwich structures were optimized iteratively using the DOT program T-bolts were used for joining the blade root and the hub, which were modeled using a 3D FE volume model. In order to confirm the safety of the root connection, the static stresses of the thick root laminate and the steel. bolts were predicted by taking account of the bolt pretension and the root bending moments. The calculated stresses were compared with the material strengths.

  • PDF

Structural Design Optimization of Gageocho Jacket Structure Considering Unity Check (가거초 자켓 구조물의 허용응력비를 고려한 구조 최적설계)

  • Kim, Byungmo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.205-212
    • /
    • 2021
  • Offshore jacket structures generally comprise steel members, and the safety standard for jacket structures typically focuses on the steel components. However, large amounts of concrete grouting is filled in the legs of the Gageocho jacket structure to aid in the recovery from typhoon damage. This paper proposes a safe and lightweight design for the Gageocho ocean research station comprising steel members instead of large amounts of concrete reinforcement in the legs. Based on the actual design, the structural members are grouped according to their functional roles, and the inner diameter of the cross-section in each design group is defined as a design variable. Structural optimization is carried out using a genetic algorithm to minimize the total weight of the structure. To satisfy the conservative safety standards in the offshore field, both the maximum stress and the unity check criteria are considered as design constraints during optimization. For enhanced safety confidence, extreme environmental conditions are assumed. The maximum marine attachment thickness and the section erosion in the splash zone are applied. Additionally, the design load is defined as the force induced by extreme waves, winds, and currents aligned in the same direction. All the loading directions surrounding the structure are considered to design the structure in a balanced and safe manner. As a result, compared with the current structure, the proposed structure features a 45% lighter design, satisfying the strict offshore safety criteria.

Behavior of cable-stayed bridges under dynamic subsidence of pylons

  • Raftoyiannis, I.G.;Michaltsos, G.T.;Konstantakopoulos, T.G.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.317-345
    • /
    • 2012
  • Cable-stayed bridges are often used in modern bridge engineering for connecting two geographical points of long distance. A special load case to cable-stayed bridges is earthquake, which can produce horizontal as well as vertical movements on the pylons of the bridge. These movements may be transient in nature, i.e., only resulting in the transient vibration of the bridge, but causing no damage consequences. In some extreme cases, they may cause permanent subsidence on one or more pylons of the bridge. In this paper, the effect of pylons' subsidence on the dynamic deformations of the bridge and on the cables' strength is thoroughly studied. Conclusions useful to the design of cable-stayed bridges will be drawn from the numerical study.

Nonlinear Hydroelastic Analysis Using a Time-domain Strip Theory m Regular Waves (규칙파중 시간영역 스트립이론을 이용한 비선형 유탄성 해석)

  • CHO IL-HYOUNG;HAN SUNG-KON;KWON SEUNG-MIN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.1-8
    • /
    • 2005
  • A nonlinear time-domain strip theory for vertical wave loads and ship responses is to be investigated. The hydrodynamic memory effect is approximated by a higher order differential equation without convolution. The ship is modeled as a non-uniform Timoshenko beam. Numerical calculations are presented for the S175 Containership translating with the forward speed in regular waves. The approach described in this paper can be used in evaluating ship motions and wave loads in extreme wave conditions and validating nonlinear phenomena in ship design.

Effects of environmental parameters for offshore wind turbine system with jacket support structure (환경변수가 자켓 하부구조물 해상 풍력시스템 거동에 미치는 영향)

  • Lee, Jong-Sun;Park, Hyun-Chul;Shi, Wei;Kim, Yong-Hwan;Na, Sangkwon;Lee, Jonghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.38.1-38.1
    • /
    • 2011
  • This study investigates the effects of Pierson-Moskowitz, Jonswap spectrum that are typical irregular wave spectrums for wind turbine system with jacket support structure. Also various offshore environmental parameters based on korean local condition were used in our study. The loads acting on the system was considered by referring to the Design Load Case from IEC guide line. And improved von Karman model was used as a turbulence model. As a result, various significant wave height and peak spectral period cause noticeable difference of extreme and fatigue loads prediction.

  • PDF

Experimental Studies of the Forming Process for the Tubular Hydroforming Technology (관재 하이드로 포밍에 의한 성형 공정의 실험적 연구)

  • 김성태;임성언;이택근;김영석
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • In this paper, we developed the hydroforming simulator which can apply an axial compressive force and high internal pressure to bulge a tube. Experimental dtudies have been performed to investigate the effect of each parameters such as internal pressure and axial compression stroke required for the forming of circular components. Under the improper forming conditions there were two forming failures. One was the axial buckling due to excessive axial compressive load and the other was the circumferential necking fracture due to relatively high internal pressure. A safe forming zone without any failures exists between these two extreme zones. Also the condition of forming failure such as fracture is examined throughout the theoretical analysis. This paper covers a brief overview of the mechanism of hydroforming process as well as the design of die and tools.

  • PDF

Launch Environment Requirements for Earth Observation Satellite (지구관측위성의 발사환경시험 요구조건)

  • Kim, Kyung-Won;Kim, Sung-Hoon;Kim, Jin-Hee;Rhee, Ju-Hun;Hwang, Do-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • After launching, spacecraft is exposed to extreme environments. So spacecraft should be tested after design/manufacture to verify whether components can be operated functionally. Acceleration transferred from launch vehicle to spacecraft produces quasi-static load, sine vibration and random vibration. Random vibration is also induced by acoustic vibrations transferred by surface of spacecraft. And shock vibration is produced when spacecraft is separated from launch vehicle. To verify operation of spacecraft under these launch environments, separation shock test, sine vibration test, acoustic vibration test and random vibration test should be performed. This paper describes these launch environment test requirements.

  • PDF