Journal of the Korean Institute of Intelligent Systems
/
v.14
no.6
/
pp.764-770
/
2004
This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.
This paper presents a rule extraction algorithm RE to acquire explicit rules from trained neural networks. The validity of extracted rules has been confirmed using 6 different data sets. Based on experimental results, we conclude that extracted rules from RE predict more accurately and robustly than neural networks themselves and rules obtained from an inductive learning algorithm do. Rule extraction algorithm for neural networks are important for incorporating knowledge obtained from trained networks into knowledge based systems. In lieu of this, the proposed RE algorithm contributes to the trend toward developing hybrid and versatile knowledge-based system including expert systems and knowledge-based decision su, pp.rt systems.
Information extraction is a process of recognizing and fetching particular information fragments from a document. In order to extract information uniformly from many heterogeneous information sources, it is necessary to produce information extraction rules called a wrapper for each source. Previous methods of information extraction can be categorized into manual wrapper generation and automatic wrapper generation. In the manual method, since the wrapper is manually generated by a human expert who analyzes documents and writes rules, the precision of the wrapper is very high whereas it reveals problems in scalability and efficiency In the automatic method, the agent program analyzes a set of example documents and produces a wrapper through learning. Although it is very scalable, this method has difficulty in generating correct rules per se, and also the generated rules are sometimes unreliable. This paper tries to combine both manual and automatic methods by proposing a new method of learning information extraction rules. We adopt the scheme of supervised learning in which a user-interface agent is designed to get information from the user regarding what to extract from a document, and eventually XML-based information extraction rules are generated through learning according to these inputs. The interface agent is used not only to generate new extraction rules but also to modify and extend existing ones to enhance the precision and the recall measures of the extraction system. We have done a series of experiments to test the system, and the results are very promising. We hope that our system can be applied to practical systems such as information-mediator agents.
International Journal of Advanced Culture Technology
/
v.12
no.3
/
pp.206-212
/
2024
This study presents five selection rules for training algorithms to extract audio sources from noise. The five rules are Dynamics, Roots, Tonal Balance, Tonal-Noisy Balance, and Stereo Width, and the suitability of each rule for sound extraction was determined by spectrogram analysis using various types of sample sources, such as environmental sounds, musical instruments, human voice, as well as white, brown, and pink noise with sine waves. The training area of the algorithm includes both melody and beat, and with these rules, the algorithm is able to analyze which specific audio sources are contained in the given noise and extract them. The results of this study are expected to improve the accuracy of the algorithm in audio source extraction and enable automated sound clip selection, which will provide a new methodology for sound processing and audio source generation using noise.
Proceedings of the Korea Contents Association Conference
/
2005.05a
/
pp.448-451
/
2005
In this paper, we describe a method of answer extraction on a concept-based question-answering system. The concept-based question answering system is a system which extract answer using concept information. we have researched the method of answer extraction using concepts which analyzed and extracted through question analysing with answer extracting rules. We analyzed documents including answers and then composed answer extracting rules. Rules consist of concept and syntactic information, we generated candidates of answer through the rules and then chose answer.
Data is the expression of the language or numerical values that show some characteristics. And information is extracted from data for the specific purposes. The knowledge is utilized as information to construct rules that recognize patterns and make decisions. Today, knowledge extraction and application of the knowledge are broadly accomplished to improve the comprehension and to elevate the performance of systems in several industrial fields. The knowledge extraction could be achieved by some steps that include the knowledge acquisition, expression, and implementation. Such extracted knowledge can be drawn by rules. Clustering (CU, input space partition (ISP), neuro-fuzzy (NF), neural network (NN), extension matrix (EM), etc. are employed for expression the knowledge by rules. In this paper, the various approaches of the knowledge extraction are examined by categories that separate the methods by the applied industrial fields. Also, the several test data and the experimental results are compared and analysed based upon the applied techniques that include CL, ISP, NF, NN, EM, and so on.
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.128-132
/
2001
In this paper, we evaluate and contrast four neural network rule extraction approaches for credit scoring. Experiments are carried our on three real life credit scoring data sets. Both the continuous and the discretised versions of all data sets are analysed The rule extraction algorithms, Neurolonear, Neurorule. Trepan and Nefclass, have different characteristics, with respect to their perception of the neural network and their way of representing the generated rules or knowledge. It is shown that Neurolinear, Neurorule and Trepan are able to extract very concise rule sets or trees with a high predictive accuracy when compared to classical decision tree(rule) induction algorithms like C4.5(rules). Especially Neurorule extracted easy to understand and powerful propositional if -then rules for all discretised data sets. Hence, the Neurorule algorithm may offer a viable alternative for rule generation and knowledge discovery in the domain of credit scoring.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.3
no.2
/
pp.194-199
/
2003
Data are an expression of the language or numerical values that show some features. And the information is extracted from data for the specific purposes. The knowledge is utilized as information to construct rules that recognize patterns or make a decision. Today, knowledge extraction and application of that are broadly accomplished for the easy comprehension and the performance improvement of systems in the several industrial fields. The knowledge extraction can be achieved by some steps that include the knowledge acquisition, expression, and implementation. Such extracted knowledge is drawn by rules with data mining techniques. Clustering (CL), input space partition (ISP), neuro-fuzzy (NF), neural network (NN), extension matrix (EM), etc. are employed for the knowledge expression based upon rules. In this paper, the various approaches of the knowledge extraction are surveyed and categorized by methodologies and applied industrial fields. Also, the trend and examples of each approaches are shown in the tables and graphes using the categories such as CL, ISP, NF, NN, EM, and so on.
The Journal of Korean Association of Computer Education
/
v.21
no.1
/
pp.51-58
/
2018
Recently artificial neural networks have shown excellent performance in various fields. However, there is a problem that it is difficult for a person to understand what is the knowledge that artificial neural network trained. One of the methods to solve these problems is an algorithm for extracting rules from trained neural network. In this paper, we extracted rules from artificial neural networks using ordered-attribute search(OAS) algorithm, which is one of the methods of extracting rules, and analyzed result to improve extracted rules. As a result, we have found that the distribution of output values of the hidden layer unit affects the accuracy of rules extracted by using OAS algorithm, and it is suggested that efficient rules can be extracted by binarizing hidden layer output values using hidden unit clarification.
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.336-342
/
2001
One of the most important problems on rule induction methods is that they cannot extract rules, which plausibly represent experts decision processes. On one hand, rule induction methods induce probabilistic rules, the description length of which is too short, compared with the experts rules. On the other hand, construction of Bayesian networks generates too lengthy rules. In this paper, the characteristics of experts rules are closely examined and a new approach to extract plausible rules is introduced, which consists of the following three procedures. First, the characterization of decision attributes (given classes) is extracted from databases and the classes are classified into several groups with respect to the characterization. Then, two kinds of sub-rules, characterization rules for each group and discrimination rules for each class in the group are induced. Finally, those two parts are integrated into one rule for each decision attribute. The proposed method was evaluated on a medical database, the experimental results of which show that induced rules correctly represent experts decision processes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.