• Title/Summary/Keyword: Extraction of building boundary

Search Result 23, Processing Time 0.023 seconds

Extraction and Regularization of Various Building Boundaries with Complex Shapes Utilizing Distribution Characteristics of Airborne LIDAR Points

  • Lee, Jeong-Ho;Han, Soo-Hee;Byun, Young-Gi;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.547-557
    • /
    • 2011
  • This study presents an approach for extracting boundaries of various buildings, which have concave boundaries, inner yards, non-right-angled corners, and nonlinear edges. The approach comprises four steps: building point segmentation, boundary tracing, boundary grouping, and regularization. In the second and third steps, conventional algorithms are improved for more accurate boundary extraction, and in the final step, a new algorithm is presented to extract nonlinear edges. The unique characteristics of airborne light detection and ranging (LIDAR) data are considered in some steps. The performance and practicality of the presented algorithm were evaluated for buildings of various shapes, and the average omission and commission error of building polygon areas were 0.038 and 0.033, respectively.

Building Boundary Extraction from Airborne LIDAR Data (항공 라이다자료를 이용한 건물경계추출에 관한 연구)

  • Lee, Suk Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.923-929
    • /
    • 2008
  • Due to the increasing need for 3D spatial data, modeling of topography and artificial structures plays an important role in three-dimensional Urban Analysis. This study suggests a methodology for solving the problem of calculation for the extraction of building boundary, minimizing the user's intervention, and automatically extracting building boundary, using the LIDAR data. The methodology suggested in this study is characterized by combining the merits of the point-based process and the image-based process. The procedures for extracting building boundary are three steps: 1) LIDAR point data are interpolated to extract approximately building region. 2) LIDAR point data are triangulated in each individual building area. 3) Extracted boundary of each building is then simplified in consideration of its area, minimum length of building.The performance of the developed methodology is evaluated using real LIDAR data. Through the experiment, the extracted building boundaries are compared with digital map.

Semi-automatic Extraction of 3D Building Boundary Using DSM from Stereo Images Matching (영상 매칭으로 생성된 DSM을 이용한 반자동 3차원 건물 외곽선 추출 기법 개발)

  • Kim, Soohyeon;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1067-1087
    • /
    • 2018
  • In a study for LiDAR data based building boundary extraction, usually dense point cloud was used to cluster building rooftop area and extract building outline. However, when we used DSM generated from stereo image matching to extract building boundary, it is not trivial to cluster building roof top area automatically due to outliers and large holes of point cloud. Thus, we propose a technique to extract building boundary semi-automatically from the DSM created from stereo images. The technique consists of watershed segmentation for using user input as markers and recursive MBR algorithm. Since the proposed method only inputs simple marker information that represents building areas within the DSM, it can create building boundary efficiently by minimizing user input.

3D Boundary Extraction of A Building Using Terrestrial Laser Scanner (지상라이다를 이용한 건축물의 3차원 경계 추출)

  • Lee, In-Su
    • Spatial Information Research
    • /
    • v.15 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • Terrestrial laser scanner provides highly accurate, 3D images and by sweeping a laser beam over a scene or object, the laser scanner is able to record millions of 3D points' coordinates in a short period, so becoming distinguished in various application fields as one of the representative surveying instruments. This study deals with 3D building boundary extraction using Terrestrial Laser Scanner. The results shows that high accuracy 3D coordinates for building boundaries are possibly acquired fast, but terrestrial laser scanner is a ground-based system, so "no roofs", and "no lower part of building" due to trees and electric-poles, etc. It is expected that the combination of total station, terrestrial laser scanner, airborne laser scanner with aerial photogrammetry will contribute to the acquisition of an effective 3D spatial information.

  • PDF

A Semi-automated Method to Extract 3D Building Structure

  • Javzandulam, Tsend-Ayush;Kim, Tae-Jung;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.211-219
    • /
    • 2007
  • Building extraction is one of the essential issues for 3D city modelling. In recent years, high-resolution satellite imagery has become widely available and it brings new methodology for urban mapping. In this paper, we have developed a semi-automatic algorithm to determine building heights from monoscopic high-resolution satellite data. The algorithm is based on the analysis of the projected shadow and actual shadow of a building. Once two roof comer points are measured manually, the algorithm detects (rectangular) roof boundary automatically. Then it estimates a building height automatically by projecting building shadow onto the image for a given building height, counting overlapping pixels between the projected shadow and actual shadow, and finding the height that maximizes the number of overlapping pixels. Once the height and roof boundary are available, the footprint and a 3D wireframe model of a building can be determined. The proposed algorithm is tested with IKONOS images over Deajeon city and the result is compared with the building height determined by stereo analysis. The accuracy of building height extraction is examined using standard error of estimate.

Information Fusion of Photogrammetric Imagery and Lidar for Reliable Building Extraction (광학 영상과 Lidar의 정보 융합에 의한 신뢰성 있는 구조물 검출)

  • Lee, Dong-Hyuk;Lee, Kyoung-Mu;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.236-244
    • /
    • 2008
  • We propose a new building detection and description algorithm for Lidar data and photogrammetric imagery using color segmentation, line segments matching, perceptual grouping. Our algorithm consists of two steps. In the first step, from the initial building regions extracted from Lidar data and the color segmentation results from the photogrammetric imagery, we extract coarse building boundaries based on the Lidar results with split and merge technique from aerial imagery. In the secondstep, we extract precise building boundaries based on coarse building boundaries and edges from aerial imagery using line segments matching and perceptual grouping. The contribution of this algorithm is that color information in photogrammetric imagery is used to complement collapsed building boundaries obtained by Lidar. Moreover, linearity of the edges and construction of closed roof form are used to reflect the characteristic of man-made object. Experimental results on multisensor data demonstrate that the proposed algorithm produces more accurate and reliable results than Lidar sensor.

TECHNIQUE OF EXTRACTING BUILDING BOUNDARIES FROM SEGMENTED ALS POINTS

  • Lee, Jeong-Ho;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.141-144
    • /
    • 2008
  • Many studies have been conducted on extracting buildings from ALS(Airborne Laser Scanning) data. After segmentation or classification of building points, additional steps such as generalization is required to get straight boundary lines that better approximate the real ones. In much research, orthogonal constraints are used to improve accuracies and qualities. All the lines of the building boundaries are assumed to be either parallel or perpendicular mutually. However, this assumption is not valid in many cases and more complex shapes of buildings have been increased. A new algorithm is presented that is applicable to various complex buildings. It consists of three steps of boundary tracing, grouping, and regularization. The performance of our approach was evaluated by applying the algorithm to some buildings and the results showed that our proposed method has good potential for extracting building boundaries of various shapes.

  • PDF

Automatic Building Extraction Using LIDAR Data

  • Cho, Woo-Sug;Jwa, Yoon-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1137-1139
    • /
    • 2003
  • This paper proposed a practical method for building detection and extraction using airborne laser scanning data. The proposed method consists mainly of two processes: low and high level processes. The major distinction from the previous approaches is that we introduce a concept of pseudogrid (or binning) into raw laser scanning data to avoid the loss of information and accuracy due to interpolation as well as to define the adjacency of neighboring laser point data and to speed up the processing time. The approach begins with pseudo-grid generation, noise removal, segmentation, grouping for building detection, linearization and simplification of building boundary , and building extraction in 3D vector format. To achieve the efficient processing, each step changes the domain of input data such as point and pseudo-grid accordingly. The experimental results shows that the proposed method is promising.

  • PDF

Refinement of Building Boundary using Airborne LiDAR and Airphoto (항공 LiDAR와 항공사진을 이용한 건물 경계 정교화)

  • Kim, Hyung-Tae;Han, Dong-Yeob
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.136-150
    • /
    • 2008
  • Many studies have been carried out for automatic extraction of building by LiDAR data or airphoto. Combining the benefits of 3D location information data and shape information data of image can improve the accuracy. So, in this research building recognition algorithm based on contour was used to improve accuracy of building recognition by LiDAR data and elaborate building boundary recognition by airphoto. Building recognition algorithm based on contour can generate building boundary and roof structure information. Also it shows better accuracy of building detection than the existing recognition methods based on TIN or NDSM. Out of creating buffers in regular size on the building boundary which is presumed by contour, this research limits the boundary area of airphoto and elaborate building boundary to fit into edge of airphoto by double active contour. From the result of this research, 3D building boundary will be able to be detected by optimal matching on the constant range of extracted boundary in the future.

  • PDF

Building Extraction from Lidar Data and Aerial Imagery using Domain Knowledge about Building Structures

  • Seo, Su-Young
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2007
  • Traditionally, aerial images have been used as main sources for compiling topographic maps. In recent years, lidar data has been exploited as another type of mapping data. Regarding their performances, aerial imagery has the ability to delineate object boundaries but omits much of these boundaries during feature extraction. Lidar provides direct information about heights of object surfaces but have limitations with respect to boundary localization. Considering the characteristics of the sensors, this paper proposes an approach to extracting buildings from lidar and aerial imagery, which is based on the complementary characteristics of optical and range sensors. For detecting building regions, relationships among elevation contours are represented into directional graphs and searched for the contours corresponding to external boundaries of buildings. For generating building models, a wing model is proposed to assemble roof surface patches into a complete building model. Then, building models are projected and checked with features in aerial images. Experimental results show that the proposed approach provides an efficient and accurate way to extract building models.