• Title/Summary/Keyword: Extraction of TPH

Search Result 26, Processing Time 0.018 seconds

Extraction of Total Petroleum Hydracabons from Petroleum Oil-Contaminated Sandy Soil by Soil Washing (토양 세척법에 의한 유류오염 사질토양의 TPH 추출 효율 평가)

  • Lee, Cha-Dol;Yoo, Jong-Chan;Yang, Jung-Seok;Kong, Jun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.18-24
    • /
    • 2013
  • The influences of various operating parameters on physico-chemical techniques were evaluated to remediate petroleum-contaminated sandy soil including S/L ratio, kinetic, and effect of soil particle size. The simple extraction using tap water removed only 20.6% of total petroleum hydrocarbon (TPH), and addition of NaOH enhanced the removal of TPH to approximately 30%. To meet the regulation levels, a surfactant, sodium dodecyl sulfate, was added, and the removal of TPH increased to 4 times. Probably, the carbonate minerals affected chemical aging and soprtion of petroleum, which inhibited the extraction of TPH. The soil with smaller particle size contained more TPH, and the removal of TPH was obstructed with smaller particle size. However, NaOH addition increased the removal of TPH in the smaller particles. The physico-chemical properties of soil influenced greatly the removal of petroleum even in sandy soil.

Comparison of Extraction Methods for the Analysis of Total Petroleum Hydrocarbons in Contaminated Soil (오염토양내 석유계 총탄화수소 분석을 위한 추출방법의 비교)

  • Eui-Young Hwang;Wan Namkoong;Jung-Young Choi
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.45-53
    • /
    • 2000
  • Two extraction methods for total petroleum hydrocarbon (TPH) from contaminated soil were evaluated. The soil used for this study was sandy loam. Diesel oil was selected as representative petroleum hydrocarbons and was spiked at 100, 10,000, 50,000mg TPH/kg dry soil. Percentage recovery of TPH by shaking method was higher compared to Soxhlet extraction. At extraction time of 2 hours and sample to solvent ratio of 1 : 5, the highest percentage recovery was obtained. In this condition, percentage recovery of TPH in soil contaminated with 100mg/kg and 50,000mg/kg as TPH was 95.9% and 95.5%, respectively The volume of solvent lost by volatilization in shaking method was relatively small compared to Soxhlet extraction.

  • PDF

The Simultaneous Analysis of Benzene, Toluene, Ethylbenzene, o,m,p-Xylenes and Total Petroleum Hydrocarbons in Soil by GC-FID after Ultra-Sonication

  • Sin, Ho Sang;Gwon, O Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1101-1105
    • /
    • 2000
  • A simultaneous determination method of BTEX (benzene, toluene, ethylbenzene, o,m.p-xylene) and TPH (kerosene, diesel, jet fuel and bunker C) in soil with gas chromatography/flame ionization detection (GC-FID) was described. The effects of extracti on method, extraction solvent, solvent volume and extraction time on the extraction performance were studied. A sonication method was simpler and more efficient than Soxhlet or shaking methods. Sonication with 10 mL of acetone/methylene chloride (1 : 1, v/v) for 10 min was found to be optimal extraction conditions for 20 g of soil. Peak shapes and quantification of BTEX and TPH were excellent, with linear calibration curves over a wide range of 1-500 mg/L for BTEX and 10-5000 mg/L for TPH. Good reproducibilities by sonication were obtained, with the RSD values below 10%. By using about 20 g of soil, detection limits were 0.8 mg/L for BTEX and 10 mg/L for TPH. The advantages of this procedure are the use of simple and common equipment, reduced volumes of organic solvents, rapid extraction periods of less than 20 min, and simultaneous analysis of volatile and semivolatile compounds.

Extraction Characteristics and Quantitational Methods for Total Petroleum Hydrocarbons in Soil

  • Jeon, Chi-Wan;Lee, Jung-Hwa;Song, Kyung-Sun;Lee, Sang-Hak;Lee, Jung-Min
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.119-122
    • /
    • 2003
  • Quantitation methods of total petroleum hydrocarbons to determinate oil contaminated level in soil were discussed. Extraction characteristics of several pretreatment methods and practical detection limit and reappearances in gas chromatography/mass spectrometry. with each pretreatment method were investigated. The obtained results showed that the newly adopted quantitation method and mechanical shaking extraction method using methanol with extraction solvent are more practical and applicable to real sample than the conventional methods. In applying these methods to gasoline, kerosene, fuel oil which are major source of soil contamination, the practical quantitation limit and % relative standard deviation was able to determine with range of 2.5 - 10 ppm, 5 - 7 %.

  • PDF

디젤오염토양복원을 위한 고온공기 주입/추출 공정의 토양 파일 공법에의 적용 연구

  • 박민호;박기호;홍승모;고석오
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.63-67
    • /
    • 2004
  • A field pilot study on remediation of diesel-contaminated soil by hot air injection/extraction process constructing soil piling system was conducted to evaluate the effects of hot air on the removal of diesel and each constituent. After the heating process of 2 months, the equilibrium temperature of soil reached to 10$0^{\circ}C$ and soil TPH concentration was reduced to about 72% against the initial concentration. Additional extraction process of 2 months induced the continuous extraction of residual diesel and the increment of microbial activity, which made soil TPH concentration reduced to 95%. In addition biological removal of non volatile constituents in diesel was verified indirectly and the removal pattern of each DRO(diesel range organic) as soil temperature was explained.

  • PDF

Simultaneous analysis method of BTEX and TPH in soil (토양중 BTEX와 TPH의 동시분석법에 관한 연구)

  • 신호상;박치후
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.3-8
    • /
    • 2000
  • A simple and rapid simultaneous analysis method of BTEX and TPH in soil was developed. 5g of soil sample were mixed with sodium sulfate and then extracted with 10 mL of mixture of acetone and dichloromethane (1:1). Extraction was performed for 10 min in sonicator and analysis was with GC-FID. The detection limits of BTEX and TPH was 0.8 and 10 mg/kg, respectively. The analytical recoveries were >90% for all BTEX and TPH. Low boiling point fuels and high boiling point fuels are consistently reproduced within RSD 7%. The analysis results show very simple and rapid quantitation of BTEX and TPH in soil sample with low RSD.

  • PDF

A Study on the In-Situ Soil Vapor Extraction and Soil Flushing for the Remediation of the Petroleum Contaminated Site (유류로 오염된 토양 복원을 위한 토양가스추출 및 세척공정의 현장적용 연구)

  • Ko, Seok-Oh;Kwon, Soo-Youl;Yoo, Hee-Chan;Kang, Hee-Man;Lee, Ju-Goang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.83-92
    • /
    • 2001
  • Field investigations for subsurface soil and groundwater at a gas station showed that the site was severely contaminated and even petroleum compounds as free liquid state were observed. Pilot-scale soil flushing and soil vapor extraction process(SVE) were applied to evaluate the effectiveness of pollutants removal. Surfactant solution, Tween 80, was used to enhance the solubility of petroleum compounds and resulted in about 10 times increase on TPH(Total Petroleum Hydrocarbon) concentration. As for SVE method, maximum concentration of TPH and BTEX reached within 24 hours of extraction and then continuously decreased. Considerations on the groundwater level and the kinetic limitation for volatilization of contaminants have to be taken into account for the effective application of SVE process.

  • PDF

Biofiltration of soil Vapor Extraction Off-gas from Gasoline Contaminated Soil Using a Compost (퇴비를 이용한 가솔린 오염토양증기추출 배가스의 바이오필터 처리)

  • 남궁완;박준석
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.25-33
    • /
    • 1999
  • The recent emergence of biofiltration as a cost effective waste-gas control technology has stimulated in European countries and the USA. Biofiltration of soil vapor extraction off-gas from gasoline contaminated site was simulated in lab-scale in this study. A filling material used was a compost. This study was conducted to evaluate biofiltration characteristics of the compost material for gasoline off-gas. TPH elimination capacity at the gas loading rate of about 50g/$\textrm{m}^3$((filling material)/hr was circa 40g/$\textrm{m}^3$((filling material)/hr. Removal rate of xylene was the highest among BTEX. while it was the lowest in case of bezene. The maximum elimination capacity of the compost was about 1.5g/$\textrm{m}^3$((filling material)/hr for benzene. More than 95% of trimethylbenzene and naphtalene were removed below the loading rate of 0.7g/㎥(filling material)/hr. About 80% of total TPH and BTEX were removed by biodegradation.

  • PDF

토양 세정법을 이용한 실제 유류 오염 토양 및 지하수 정화

  • 강현민;이민희;정상용;강동환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.418-421
    • /
    • 2003
  • Surfactant enhanced in-situ soil flushing was peformed to remediate the soil and groundwater at an oil contaminated site, and the effluent solution was treated by the chemical treatment process including DAF(Dissolved Air Flotation). A section from the contaminated site(4.5m$\times$4.5m$\times$6.0m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average Hydraulic conductivity of 2.0$\times$10$^{-4}$ cm/sec. Two percent of sorbitan monooleate(POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminant section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed by GC(gas-chromatography) for TPH concentration with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit(WWDL). Total 18.5kg of oil (TPH) was removed from the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. Results suggest that in-situ soil flushing and chemical treatment process including DAF could be a successful process to remediate contaminated sites distributed in Korea.

  • PDF