온라인 교육시장이 확대됨에 따라 다양한 교육용 콘텐츠들이 출시되어지고 이를 사용하는 사용자들의 사용성과 사용자환경이 반영될 수 있는 콘텐츠 개발 방법이 연구되고 있다. 시장의 양적 확대를 뒷받침할 콘텐츠의 질적 성장을 위해서는 새로이 개발되지는 콘텐츠의 개발 방향성 확보 시점에서 기존 출시 모형에 대한 빠른 분석이 매우 중요하다. 하지만 콘텐츠 개발과정에서 개발 목표 설정에 필요한 전형적 모델의 추출과정을 직관적으로 협의할 수 있는 툴의 부재로 제작시안을 기준으로 한 반복적 업무 회귀가 개발공정에 필요한 많은 인력과 시간을 낭비하게 한다. 통계를 이용한 자료원 검증툴은 개발 전 과정과 최종 개발 결과에 영향을 주는 프로토타입의 선정 시 협력 업무를 수행하는 단일기업 내 또는 다수의 기업 간 소통의 부재로 인한 성과 이원화 문제를 공정 간에 스크린해주는 긍정적 효익으로 작용할 수 있다. 본 연구는 시료가 충분치 않은 AR기반 교육용 콘텐츠의 개발과정에 적용할 후속 현장실험 적용 통계서비스모델을 설계하는 것으로써 유사 범주의 시료 확보를 통해 개발에 필요한 데이터를 확보하는 것이 적정하여 빅데이터를 이용한 자료의 취합과 의사결정이 프로세스를 기준으로 진행되었다. 이번 연구에서 제시되는 데이터 통계분석서비스 기본 모형은 직관적인 다차원 요인과 속성의 선택과 검출이 가능한 구조로 설계하였으며 후속 현장형 실험연구와 연계하여 조직 내 또는 다수 기업 간 협력활동에 조력이 가능한 온라인 기반 데이터 통계분석서비스로 제안하고자 한다.
본 연구에서는 안동댐 퇴적물의 일반항목과 중금속의 용출 특성에 대해 조사하였다. 용출 실험은 카드뮴, 구리, 납, 크롬, 아연, 수은, 비소, 철, 망간 등 중금속 9개 및 pH, 총인, 총질소등 일반 3개 항목에 대해 혐기성과 호기성 조건에서 60일간 실험을 수행하였다. 총질소와 총인은 호기성 조건에 비해 혐기성 조건의 용출이 높게 나타났으며, 일부 시료에서 높은 농도가 검출되었다. 대부분의 중금속의 용출율은 아주 낮았으며, 퇴적물에서 함유량이 높은 비소와 카드뮴도 최대 용출량이 각각 0.028 mg/L, 0.003 mg/L로 낮은 값을 나타낸다. 5단계 연속추출연구에서는 쉽게 용출될 수 있는 이온교환형태나 흡착한 형태의 분율이 전체 함유량의 10% 미만으로 낮게 나타났다. 대부분의 중금속은 왕수에 용해되는 잔류(residual)형태로 존재하고 있으며, 특히 독성이 높고 오염도가 높은 비소와 카드뮴의 경우 잔류형태로 존재하는 비율이 각각 80%와 95%로 오염도에 비해 짧은 시간에 용출되어 유해성을 일으킬 가능성은 낮은 것으로 판단된다.
흉부 X선 영상의 폐렴을 신속하고 정확하게 진단하기 위하여 동일한 Xception 딥러닝 모델에 배치 사이즈를 4, 8, 16, 32로 다르게 적용하여 각각 3회의 모델링을 실시하였다. 그리고 성능평가 및 metric 평가에 대한 결과값을 3회 평균값으로 산출하여 배치 사이즈별 흉부 X선 영상의 폐렴 특징 추출과 분류의 정확도 및 신속성을 비교 평가하였다. 딥러닝 모델링의 성능평가 결과 배치 사이즈 32를 적용한 모델링의 경우 정확도, 손실함수 값, 평균제곱오차, 1 epoch 당 학습 소요 시간의 결과가 가장 우수한 결과를 나타내었다. 그리고 Test Metric의 정확도 평가는 배치 사이즈 8을 적용한 모델링이 가장 우수한 결과를 나타내었으며, 정밀도 평가는 모든 배치 사이즈에서 우수한 결과를 나타내었다. 재현율 평가는 배치 사이즈 16을 적용한 모델링이 가장 우수한 결과를 나타내었으며, F1-score는 배치 사이즈 16을 적용한 모델링이 가장 우수한 결과를 나타내었다. 그리고 AUC score 평가는 모든 배치 사이즈의 결과가 동일하였다. 이러한 결과를 바탕으로 배치 사이즈 32를 적용한 딥러닝 모델링이 높은 정확도, 안정적인 인공신경망 학습 및 우수한 신속성의 결과를 나타내었다. 향후 딥러닝을 이용한 흉부 X선 영상의 폐렴에 대한 특징 추출 및 분류에 관하여 자동진단 연구 시 배치 사이즈를 32로 적용한다면 정확하면서도 신속한 병변 검출이 가능할 것이라고 사료된다.
본 연구는 텍스트마이닝 기법을 사용하여 1990년부터 2019년까지 5,141건의 신문기사에서 '허위·과장광고' 용어의 트렌드를 분석하였다. 우선 전체 신문기사를 대상으로 빈도 분석을 통해 허위·과장광고의 최빈 키워드와 추출된 키워드 간의 맥락을 확인하고자 하였다. 다음으로 허위·과장광고가 어떻게 변화해왔는지에 대해 고찰하기 위해 10년 단위로 기사를 분리하여 빈도 분석을 수행하였고, 연도별 최빈 키워드를 주제로 한학술논문 수와 비교하여 해당 시기에 이슈가 된 키워드가 연구로까지 이어진 경향성을 파악하였다. 마지막으로 토픽모델링 분석을 통해 토픽 내 세부 키워드를 바탕으로 허위·과장광고의 동향을 제시하였다. 연구 결과, 특정 시점에 이슈가 되었던 주제가 최빈 키워드로 추출되었고 시대별 키워드 트렌드는 사회적, 환경적 요인과 연관되어 변화함을 확인하였다. 본 연구는 소비자들이 부당광고에 대한 배경지식을 함양함으로써 현명한 소비를 이어 나갈 수 있도록 도움을 주는 데 의의가 있다. 더욱이 핵심 키워드 추출을 통해 위법행위를 저지른 기업 및 관련 종사자들에게 광고의 참된 목적을 제시하고, 시사점을 전달할 수 있을 것이라 기대한다.
맥주보리 품종의 C-hordeins 분석을 위해 70% EtOH와 55% IPA가 추출용매로 이용되었으며, B-hordeins의 추출은 알코올성 용매에 1% DTT를 추가하여 수행되었다. D-hordeins은 보리 호데인 단백질 중 가장 분자량이 큰 단백질로 약산 혹은 약염기에서 용해가 이루어진다고 알려져 있으며, 본 연구에서는 pH 8.0의 약염기 용매가 추출용매로 이용되었다. 알코올성 용매 종류에 따른 C-hordeins의 구성과 양의 차이는 확인되지 않았으며 1% DTT가 첨가된 알코올성 용매에 B-hordeins과 C-hordeins이 모두 추출됨이 확인되었다. D-hordeins 추출 조건에서는 B-, C-, D-hordeins 이 모두 분석되었지만 B-hordeins의 머무름 시간은 1% DTT가 함유된 알코올 추출과 차이가 있었다. 국내 육성된 맥주보리 26품종들의 C-hordeins 분석을 통해 머무름 시간 16분에서 18분 사이의 피크 유사성을 가지고 7개의 그룹으로 분류할 수 있었다. 또한 맥주보리 육성 품종 중 사천6호와 두산29호, 진광보리와 제주보리, 호품과 다품보리를 제외한 20개 품종들은 마이너 피크들의 분석을 통해 품종의 구분이 가능하였다.
Background: Postoperative analgesia (POA) is an important determinant of successful treatment. Dexmedetomidine (DEX) has recently gained attention as a promising adjuvant to local anesthetics (LA). The present study aimed to evaluate the efficacy and safety of levobupivacaine (LB) as an adjuvant during inferior alveolar nerve block (IANB) in the extraction of lower impacted third molars (LITM). Methods: A prospective, randomized, placebo-controlled, triple-blind, parallel-arm, and clinical study was performed on 50 systemically healthy participants who required removal of an asymptomatic LITM. Using a 1:1 distribution, the participants were randomized into two groups (n = 25). Group L (control group) received 1.8 mL of 0.5% LB and 0.2 mL normal saline (placebo) and Group D (study group) received a blend of 1.8 mL of 0.5% LB and 0.2 mL (20 ㎍) DEX. The primary outcome variable was the duration of POA and hemodynamic stability, and the secondary variable was the total number of analgesics required postoperatively for up to 72 h. The participants were requested to record the time of rescue analgesic use and the total number of rescue analgesics taken. The area under the curve was plotted for the total number of analgesics administered. The pain was evaluated using the visual analog scale. Data analysis was performed using paired students and unpaired t-test, Mann-Whitney U test, Chi-square test, and receiver operating characteristic analysis. Statistical significance was set at P < 0.05. Results: The latency, profoundness of anesthesia, and duration of POA were statistically significant (P < 0.05). The differences between mean pain scores at 6, 12, 24, 48, and 72 h were found to be significant (each P = 0.0001). Fewer analgesics were required by participants in group D (2.12 ± 0.33) than in L (4.04 ± 0.67), with a significant difference (P = 0.0001). Conclusion: Perineurally administered LA with DEX is a safe, effective, and therapeutic approach for improving latency, providing profound POA, and reducing the need for postoperative analgesia.
딥러닝의 발전으로 인하여 의미론적 분할 방법은 다양한 분야에서 연구되고 있다. 의료 영상 분석과 같이 정확성을 요구하는 분야에서 분할 정확도가 떨어지는 문제가 있다. 본 논문은 의미론적 분할 시 특징 손실을 최소화하기 위해 딥러닝 기반 분할 방법인 PSPNet을 개선하였다. 기존 딥러닝 기반의 분할 방법은 특징 추출 및 압축 과정에서 해상도가 낮아져 객체에 대한 특징 손실이 발생한다. 이러한 손실로 윤곽선이나 객체 내부 정보에 손실이 발생하여 객체 분류 시 정확도가 낮아지는 문제가 있다. 이러한 문제를 해결하기 위해 의미론적 분할 모델인 PSPNet을 개선하였다. 기존 PSPNet에 제안하는 multi scale attention을 추가하여 객체의 특징 손실을 방지하였다. 기존 PPM 모듈에 attention 방법을 적용하여 특징 정제 과정을 수행하였다. 불필요한 특징 정보를 억제함으로써 윤곽선 및 질감 정보가 개선되었다. 제안하는 방법은 Cityscapes 데이터 셋으로 학습하였으며, 정량적 평가를 위해 분할 지표인 MIoU를 사용하였다. 실험을 통해 기존 PSPNet 대비 분할 정확도가 약 1.5% 향상되었다.
식품첨가물로 사용되는 알긴산나트륨은 알긴산염류로서 안정제, 증점제, 유화제 등의 기능을 한다. 알긴산나트륨의 정량법은 전처리가 복잡하고 분석시간이 많이 소요되어 상대적으로 간편하고 보편적인 분석법 연구가 요구되고 있다. 분석장비로는 HPLC-UVD 및 Unison US-Phenyl 컬럼을 사용하였으며, 전처리 조건으로 진탕기를 이용하여 실온에서 150 rpm으로 180분간 추출하였다. 알긴산나트륨의 표준용액을 5개 농도 범위에서 검량선을 작성한 결과 직선성(R2)은 평균 0.9999로 측정되었으며 검출한계(LOD) 및 정량한계(LOQ)는 각각 3.96 mg/kg, 12.0 mg/kg이었다. 또한, 천사채를 이용해 얻은 일내 및 일간 평균 회수율과 정밀도는 각각 98.47-103.74%, 1.69-3.08 RSD%이고, 빙과류에 대한 일내 및 일간 평균 회수율과 정밀도는 각각 99.95-105.76%, 0.59-3.63 RSD%이다. 상대불확도%는 CODEX의 기준에 적합한 1.5-7.9%의 결과를 나타냈다. 본 연구에서 확립한 방법의 적용성 검토를 위해 총 103개 품목에 대한 알긴산나트륨의 함량을 정량한 결과 당면, 유탕면, 당류가공품 유형 순으로 높은 검출율을 보였다.
최근, 다수의 연구가 지수적으로 증가하는 지진 자료를 효율적이고 정확하게 처리하기 위해 기계학습을 활용하고 있다. 본 연구는 지진의 발생 시간, 위치, 규모의 정보를 확장하여 기계학습에 적용 가능한 자료를 제작한 후, 주성분 분석을 통해 추출한 자료의 주요 성분으로 자료의 차원을 축소하였다. 차원이 확장된 자료는 36,699개의 지진 사건을 포함하는 Global Centroid Moment Tensor 카탈로그로부터 얻은 지진 정보의 통계량으로 구성되었다. 표준화와 최대-최소화 스케일링을 활용하여 자료 전처리를 수행하였으며, 스케일링이 완료된 자료에 주성분 분석을 적용하여 자료의 주요 특징을 추출하였다. 스케일링은 상이한 단위로 인한 특징 값의 차이를 현저히 감소시켰으며, 그 중 표준화는 다른 전처리에 비해서 각 특징의 중앙값을 더 균등하게 변환하였다. 주성분 분석이 스케일링이 적용되지 않은 자료로부터 추출한 여섯 개의 주성분은 원본 자료의 정보를 99% 설명하였다. 표준화와 최대-최소 스케일링이 적용된 자료로부터 추출한 열여섯 개의 주성분은 원본 자료의 정보의 98%를 재구성하였다. 이는 특징 값의 분포가 균등한 자료의 정보를 보존하기 위해서는 더 많은 주성분이 필요함을 지시한다. 본 연구는 지진 데이터와 지진 거동과의 관계를 분석하는 효율적이고 정확한 기계 학습 모형을 훈련시키기 위한 데이터 처리 방법을 제안하였다.
상시진동을 이용하여 구조계의 동특성을 추출하는 운용모드해석 기법은 케이블교량 구조건전성모니터링의 한 분야로써 다양한 연구와 실험적 검증이 수행되어왔다. 본 연구에서는 두 번에 걸친 상시진동실험과 함께 3년간의 장기 계측을 통해 수집된 가속도 데이터를 이용하여 공용 중인 사장교의 장단기 동특성을 평가하였다. 교량 준공 이후 6년과 19년이 경과한 시기에 실시한 고해상도 상시진동실험으로부터 0.1 ~ 2.5 Hz 대역에서 27개 수직모드(휨, 비틈)와 1개 수평모드를 추출하였다. 운용모드해석에 기반한 동특성 추출은 PP기법, ERADC기법, FDD기법, TDD기법을 적용하였으며, 적용한 기법들 간에 유의미한 차이가 없는 것을 확인하였다. 장기 계측 고유진동수와 환경 요인(온도, 바람)에 대한 상관성 분석으로부터 온도 변화가 고유진동수 변동에 지배적인 영향인자임을 확인하였다. 대상교량의 고유진동수 감소 경향은 구조성능과 일체성이 변한 것이 아니라 두 번의 상시진동실험 간 온도 차이에 의한 환경영향이 컸음을 밝혔다. 또한 TDD기법 적용 시, 지연이 0에서 자기상관이 1이 되도록 시퀀스를 정규화하는 알고리즘을 추가하여 모드형상 추출의 정확도를 개선하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.