• 제목/요약/키워드: Extracellular volume fraction

검색결과 12건 처리시간 0.017초

Chemotherapy-Related Cardiac Dysfunction: Quantitative Cardiac Magnetic Resonance Image Parameters and Their Prognostic Implications

  • Jinhee Kim;Yoo Jin Hong;Kyunghwa Han;Jin Young Kim;Hye-Jeong Lee;Jin Hur;Young Jin Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • 제24권9호
    • /
    • pp.838-848
    • /
    • 2023
  • Objective: To quantitatively analyze the cardiac magnetic resonance imaging (CMR) characteristics of chemotherapy-related cardiac dysfunction (CTRCD) and explore their prognostic value for major adverse cardiovascular events (MACE). Materials and Methods: A total of 145 patients (male:female = 76:69, mean age = 63.0 years) with cancer and heart failure who underwent CMR between January 2015 and January 2021 were included. CMR was performed using a 3T scanner (Siemens). Biventricular functions, native T1 T2, extracellular volume fraction (ECV) values, and late gadolinium enhancement (LGE) of the left ventricle (LV) were compared between those with and without CTRCD. These were compared between patients with mild-to-moderate CTRCD and those with severe CTRCD. Cox proportional hazard regression analysis was used to evaluate the association between the CMR parameters and MACE occurrence during follow-up in the CTRCD patients. Results: Among 145 patients, 61 had CTRCD and 84 did not have CTRCD. Native T1, ECV, and T2 were significantly higher in the CTRCD group (1336.9 ms, 32.5%, and 44.7 ms, respectively) than those in the non-CTRCD group (1303.4 ms, 30.5%, and 42.0 ms, respectively; P = 0.013, 0.010, and < 0.001, respectively). They were not significantly different between patients with mild-to-moderate and severe CTRCD. Indexed LV mass was significantly smaller in the CTRCD group (65.0 g/m2 vs. 78.9 g/mm2; P < 0.001). According to the multivariable Cox regression analysis, T2 (hazard ratio [HR]: 1.14, 95% confidence interval [CI]: 1.01-1.27; P = 0.028) and quantified LGE (HR: 1.07, 95% CI: 1.01-1.13; P = 0.021) were independently associated with MACE in the CTRCD patients. Conclusion: Quantitative parameters from CMR have the potential to evaluate myocardial changes in CTRCD. Increased T2 with reduced LV mass was demonstrated in CTRCD patients even before the development of severe cardiac dysfunction. T2 and quantified LGE may be independent prognostic factors for MACE in patients with CTRCD.

Light-Chain Cardiac Amyloidosis: Cardiac Magnetic Resonance for Assessing Response to Chemotherapy

  • Yubo Guo;Xiao Li;Yajuan Gao;Kaini Shen;Lu Lin;Jian Wang;Jian Cao;Zhuoli Zhang;Ke Wan;Xi Yang Zhou;Yucheng Chen;Long Jiang Zhang;Jian Li;Yining Wang
    • Korean Journal of Radiology
    • /
    • 제25권5호
    • /
    • pp.426-437
    • /
    • 2024
  • Objective: Cardiac magnetic resonance (CMR) is a diagnostic tool that provides precise and reproducible information about cardiac structure, function, and tissue characterization, aiding in the monitoring of chemotherapy response in patients with light-chain cardiac amyloidosis (AL-CA). This study aimed to evaluate the feasibility of CMR in monitoring responses to chemotherapy in patients with AL-CA. Materials and Methods: In this prospective study, we enrolled 111 patients with AL-CA (50.5% male; median age, 54 [interquartile range, 49-63] years). Patients underwent longitudinal monitoring using biomarkers and CMR imaging. At follow-up after chemotherapy, patients were categorized into superior and inferior response groups based on their hematological and cardiac laboratory responses to chemotherapy. Changes in CMR findings across therapies and differences between response groups were analyzed. Results: Following chemotherapy (before vs. after), there were significant increases in myocardial T2 (43.6 ± 3.5 ms vs. 44.6 ± 4.1 ms; P = 0.008), recovery in right ventricular (RV) longitudinal strain (median of -9.6% vs. -11.7%; P = 0.031), and decrease in RV extracellular volume fraction (ECV) (median of 53.9% vs. 51.6%; P = 0.048). These changes were more pronounced in the superior-response group. Patients with superior cardiac laboratory response showed significantly greater reductions in RV ECV (-2.9% [interquartile range, -8.7%-1.1%] vs. 1.7% [-5.5%-7.1%]; P = 0.017) and left ventricular ECV (-2.0% [-6.0%-1.3%] vs. 2.0% [-3.0%-5.0%]; P = 0.01) compared with those with inferior response. Conclusion: Cardiac amyloid deposition can regress following chemotherapy in patients with AL-CA, particularly showing more prominent regression, possibly earlier, in the RV. CMR emerges as an effective tool for monitoring associated tissue characteristics and ventricular functional recovery in patients with AL-CA undergoing chemotherapy, thereby supporting its utility in treatment response assessment.