• 제목/요약/키워드: Extracellular signal-regulated kinase 2

검색결과 364건 처리시간 0.032초

Vitamin D Promotes Odontogenic Differentiation of Human Dental Pulp Cells via ERK Activation

  • Woo, Su-Mi;Lim, Hae-Soon;Jeong, Kyung-Yi;Kim, Seon-Mi;Kim, Won-Jae;Jung, Ji-Yeon
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.604-609
    • /
    • 2015
  • The active metabolite of vitamin D such as $1{\alpha}$,25-dihydroxyvitamin ($D_3(1{\alpha},25(OH)_2D_3)$ is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin $D_3$ metabolite, $1{\alpha},25(OH)_2D_3$, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with $1{\alpha},25(OH)_2D_3$ in the absence of differentiation-inducing factors. Treatment of HDPCs with $1{\alpha},25(OH)_2D_3$ at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, $1{\alpha},25(OH)_2D_3$ enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, $1{\alpha},25(OH)_2D_3$ induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by $1{\alpha},25(OH)_2D_3$. These results demonstrated that $1{\alpha},25(OH)_2D_3$ promoted odontoblastic differentiation of HDPCs via modulating ERK activation.

흰쥐 후지근 피판에서 허혈-재순환 손상시 pERK1/2 발현에 대한 ${\alpha}-lipoic$ Acid의 효과 (Effect of ${\alpha}-Lipoic$ Acid on Expression of pERK1/2 following Ischemia-Reperfusion Injury in the Hindlimb Muscle Flap of Rats)

  • 송정훈;김민선;박병림;박한수;채정룡;이혜미;나영천
    • Archives of Reconstructive Microsurgery
    • /
    • 제14권2호
    • /
    • pp.85-94
    • /
    • 2005
  • Purpose: This study was to evaluate the effect of ${\alpha}-lipoic$ acid, a potent free radical scavenger, on the expression of active form of extracellular signal-regulated kinase (pERK1/2) proteins from hindlimb muscles of rats following ischemia-reperfusion injury. Material and methods: 64 health, $280{\sim}350\;g$ weighted Sprague-Dawley male rats were used. In order to make a muscle flap, the gastrocnemius (GC) and soleus (SOL) muscles were dissected and elevated. The popliteal artery was occluded for 4hours and reperfused for 10 minutes, 30 minutes, 1 hour, 2 hours and 4 hours, respectively. Results: The ischemia by occlusion of the popliteal artery itself caused a minimal change in expression of phosphorylated form of proteins observed in hindlimb muscle. In contrast, after 4 hours of ischemia, immunoreactivity for pERK1/2 in the GC muscle showed dual peaks at 10 minutes and 4 hours after reperfusion. In ${\alpha}-lipoic$ acid treated group, the expression of pERK1/2 was increased significantly compared to I/R-only group. Conclusion: These results suggest that ${\alpha}-lipoic$ acid may protect I/R injury of the skeletal muscle through free radical scavening and activation of intracellular pERK1/2 expression.

  • PDF

진동이 성대세포주의 세포외기질 변화에 대한 연구 (Change of Extracellular Matrix of Human Vocal Fold Fibroblasts by Vibratory Stimulation)

  • 김지민;신성찬;권현근;천용일;노정훈;이병주
    • 대한후두음성언어의학회지
    • /
    • 제32권1호
    • /
    • pp.15-23
    • /
    • 2021
  • Background and Objectives During speech, the vocal folds oscillate at frequencies ranging from 100-200 Hz with amplitudes of a few millimeters. Mechanical stimulation is an essential factor which affects metabolism of human vocal folds. The effect of mechanical vibration on the cellular response in the human vocal fold fibroblasts cells (hVFFs) was evaluated. Materials and Method We created a culture systemic device capable of generating vibratory stimulations at human phonation frequencies. To establish optimal cell culture condition, cellular proliferation and viability assay was examined. Quantitative real time polymerase chain reaction was used to assess extracellular matrix (ECM) related and growth factors expression on response to changes in vibratory frequency and amplitude. Western blot was used to investigate ECM and inflammation-related transcription factor activation and its related cellular signaling transduction pathway. Results The cell viability was stable with vibratory stimulation within 24 h. A statistically significant increase of ECM genes (collagen type I alpha 1 and collagen type I alpha 2) and growth factor [transforming growth factor β1 (TGF-β1) and fibroblast growth factor 1 (FGF-1)] observe under the experimental conditions. Vibratory stimulation induced transcriptional activation of NF-κB by phosphorylation of p65 subunit through cellular Mitogen-activated protein kinases activation by extracellular signal regulated kinase and p38 mitogen-activated protein kinases (MAPKs) phosphorylation on hVFFs. Conclusion This study confirmed enhancing synthesis of collagen, TGF-β1 and FGF was testified by vibratory stimulation on hVFFs. This mechanism is thought to be due to the activation of NF-κB and MAPKs. Taken together, these results demonstrate that vibratory bioreactor may be a suitable alternative to hVFFs for studying vocal folds cellular response to vibratory vocalization.

Transforming Growth Factor β Receptor Type I Inhibitor, Galunisertib, Has No Beneficial Effects on Aneurysmal Pathological Changes in Marfan Mice

  • Park, Jeong-Ho;Kim, Min-Seob;Ham, Seokran;Park, Eon Sub;Kim, Koung Li;Suh, Wonhee
    • Biomolecules & Therapeutics
    • /
    • 제28권1호
    • /
    • pp.98-103
    • /
    • 2020
  • Marfan syndrome (MFS), a connective tissue disorder caused by mutations in the fibrillin-1 (Fbn1) gene, has vascular manifestations including aortic aneurysm, dissection, and rupture. Its vascular pathogenesis is assumed to be attributed to increased transforming growth factor β (TGFβ) signaling and blockade of excessive TGFβ signaling has been thought to prevent dissection and aneurysm formation. Here, we investigated whether galunisertib, a potent small-molecule inhibitor of TGFβ receptor I (TβRI), attenuates aneurysmal disease in a murine model of MFS (Fbn1C1039G/+) and compared the impact of galuninsertib on the MFS-related vascular pathogenesis with that of losartan, a prophylactic agent routinely used for patients with MFS. Fbn1C1039G/+ mice were administered galunisertib or losartan for 8 weeks, and their ascending aortas were assessed for histopathological changes and phosphorylation of Smad2 and extracellular signal-regulated kinase 1/2 (Erk1/2). Mice treated with galunisertib or losartan barely exhibited phosphorylated Smad2, suggesting that both drugs effectively blocked overactivated canonical TGFβ signaling in Fbn1C1039G/+ mice. However, galunisertib treatment did not attenuate disrupted medial wall architecture and only partially decreased Erk1/2 phosphorylation, whereas losartan significantly inhibited MFS-associated aortopathy and markedly decreased Erk1/2 phosphorylation in Fbn1C1039G/+ mice. These data unexpectedly revealed that galunisertib, a TβRI inhibitor, showed no benefits in aneurysmal disease in MFS mice although it completely blocked Smad2 phosphorylation. The significant losartan-induced inhibition of both aortic vascular pathogenesis and Smad2 phosphorylation implied that canonical TGFβ signaling might not prominently drive aneurysmal diseases in MFS mice.

Lymphotoxin β 수용체를 통한 fibroblastic reticular cell의 stress fiber 변화와 myosin의 연관성 (Alteration of Stress Fiber in Fibroblastic Reticular Cells via Lymphotoxin β Receptor Stimulation is Associated with Myosin)

  • 김민환;김연희;최우봉;이종환
    • 생명과학회지
    • /
    • 제25권5호
    • /
    • pp.585-593
    • /
    • 2015
  • Stress fiber (SF) 변화는 세포외부의 결합인자와 세포 수용체와 결합후 리모델링을 위해 액틴골격에 신호를 전달하며 일어난다. 이 연관은 결합장소에서 기계적 활동과 신호전달활동을 조절하는 다양한 스케폴드들과 신호 전달자에 의해 매게된다. Heterotrimeric transmembrane lymphotoxin α1β2 (LTα1β2)는 용해성 homotrimeric LT α를 포함하는 tumor necrosis factor (TNF) 계로 림프조직을 구성하는데 중요한 역할을 한다. LTα1β2와 LTβR의 결합은 fibroblastic reticular cell (FRC)에서 신호전달을 촉발한다. Agonistic anti-LTβR antibody 단독 혹은 LTα 그리고 TNFα의 조합으로 LTβR 자극은 세포의 액틴과 형태적 변화를 보았다. Agonistic anti-LTβR antibody의 FRC에서 작용을 통한 세포골격 재배열이 myosin과의 관련성을 확인하기위해 myosin light chain kinase (MLCK)의 저해제인 ML-7과 myosin light chains (MLC)와 myosin phosphatase target subunit 1 (MYPT1)의 인산화에 대한 효과를 확인하였다. MLCK 저해는 액틴 세포골격 재배열과 세포형태 변화를 유도하였다. 또한, MLC와 MYPT1인산화가 LTβR 자극에 의해 줄어드는 것을 확인하였다. DNA chip 분석은 myosin and actin 구성선분이 전사체 수준에서도 줄어드는 것을 보였다. 결론적으로 LTβR 자극은 FRC에서 SF변화는 myosin과 관련되어 있다는 것을 제시한다.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.

연자육 추출물의 멜라닌 합성 저해효과 (The Inhibitory Effects of Nelumbo nucifera Gaertner Extract on Melanogenesis)

  • 이준영;임경란;정택규;윤경섭
    • KSBB Journal
    • /
    • 제28권2호
    • /
    • pp.137-145
    • /
    • 2013
  • In order to develop new skin whitening agents, we prepared the $CH_2Cl_2$ layer (NGC) and BuOH layer (NGB) of 75% EtOH extract of the Nelumbinis nucifera Gaertner. We measured their tyrosinase inhibitory activity in vitro and melanin synthesis inhibitory activity in B16-F1 melanoma cells. They did not show inhibitory activity against mushroom tyrosinase but showed melanin synthesis inhibitory activity in a dose-dependent manner. In a melanin synthesis inhibition assay, NGC and NGB suppressed melanin production up to 52% and 46% at a concentration of $100{\mu}g/mL$, respectively. To elucidate the mechanism of the inhibitory effects of NGC and NGB on melanogenesis, we measured the expression of melanogenesis-related proteins by western blot assay. As a result, NGC suppressed the expression of tyrosinase, tyrosinase related protein 1 (TRP-1), tyrosinase related protein 2 (TRP-2), phosphorylated cAMP responsive element binding (p-CREB) protein, and microphthalmia associated transcription factor (MITF). And NGB inhibited the protein expression of tyrosinase and MITF, but had no significant effect on TRP-1, TRP-2, and p-CREB expression. Moreover, NGB increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). In addition, we examined the inhibitory effect on the glycosylation of tyrosinase. As a result, NGC and NGB inhibited the activity of ${\alpha}$-glucosidase in vitro and the glycosylation of tyrosinase in B16-F1 melanoma cells. From these results, we concluded that NGC and NGB could be used as active ingredients for skin whitening.

Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes

  • Hewage, Susara Ruwan Kumara Madduma;Piao, Mei Jing;Kang, Kyoung Ah;Ryu, Yea Seong;Fernando, Pattage Madushan Dilhara Jayatissa;Oh, Min Chang;Park, Jeong Eon;Shilnikova, Kristina;Moon, Yu Jin;Shin, Dae O;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.427-433
    • /
    • 2017
  • Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2

  • Kang, June Hee;Kim, Hyun Ji;Park, Mi Kyung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제25권6호
    • /
    • pp.625-633
    • /
    • 2017
  • Sphingosylphosphorylcholine (SPC) is one of the bioactive phospholipids that has many cellular functions such as cell migration, adhesion, proliferation, angiogenesis, and $Ca^{2+}$ signaling. Recent studies have reported that SPC induces invasion of breast cancer cells via matrix metalloproteinase-3 (MMP-3) secretion leading to WNT activation. Thrombospondin-1 (TSP-1) is a matricellular and calcium-binding protein that binds to a wide variety of integrin and non-integrin cell surface receptors. It regulates cell proliferation, migration, and apoptosis in inflammation, angiogenesis and neoplasia. TSP-1 promotes aggressive phenotype via epithelial mesenchymal transition (EMT). The relationship between SPC and TSP-1 is unclear. We found SPC induced EMT leading to mesenchymal morphology, decrease of E-cadherin expression and increases of N-cadherin and vimentin. SPC induced secretion of thrombospondin-1 (TSP-1) during SPC-induced EMT of various breast cancer cells. Gene silencing of TSP-1 suppressed SPC-induced EMT as well as migration and invasion of MCF10A cells. An extracellular signal-regulated kinase inhibitor, PD98059, significantly suppressed the secretion of TSP-1, expressions of N-cadherin and vimentin, and decrease of E-cadherin in MCF10A cells. ERK2 siRNA suppressed TSP-1 secretion and EMT. From online PROGgene V2, relapse free survival is low in patients having high TSP-1 expressed breast cancer. Taken together, we found that SPC induced EMT and TSP-1 secretion via ERK2 signaling pathway. These results suggests that SPC-induced TSP-1 might be a new target for suppression of metastasis of breast cancer cells.

KCl Mediates $K^+$ Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing

  • Shim, Jung Hee;Lim, Jong Woo;Kim, Byeong Kyu;Park, Soo Jin;Kim, Suk Wha;Choi, Tae Hyun
    • Archives of Plastic Surgery
    • /
    • 제42권1호
    • /
    • pp.11-19
    • /
    • 2015
  • Background Wound healing is an interaction of a complex signaling cascade of cellular events, including inflammation, proliferation, and maturation. $K^+$ channels modulate the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we investigated whether $K^+$ channel-activated MAPK signaling directs collagen synthesis and angiogenesis in wound healing. Methods The human skin fibroblast HS27 cell line was used to examine cell viability and collagen synthesis after potassium chloride (KCl) treatment by Cell Counting Kit-8 (CCK-8) and western blotting. To investigate whether $K^+$ ion channels function upstream of MAPK signaling, thus affecting collagen synthesis and angiogenesis, we examined alteration of MAPK expression after treatment with KCl (channel inhibitor), NS1619 (channel activator), or kinase inhibitors. To research the effect of KCl on angiogenesis, angiogenesis-related proteins such as thrombospondin 1 (TSP1), anti-angiogenic factor, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), pro-angiogenic factor were assayed by western blot. Results The viability of HS27 cells was not affected by 25 mM KCl. Collagen synthesis increased dependent on time and concentration of KCl exposure. The phosphorylations of MAPK proteins such as extracellular-signal-regulated kinase (ERK) and p38 increased about 2.5-3 fold in the KCl treatment cells and were inhibited by treatment of NS1619. TSP1 expression increased by 100%, bFGF expression decreased by 40%, and there is no significant differences in the VEGF level by KCl treatment, TSP1 was inhibited by NS1619 or kinase inhibitors. Conclusions Our results suggest that KCl may function as a therapeutic agent for wound healing in the skin through MAPK signaling mediated by the $K^+$ ion channel.