• 제목/요약/키워드: Extracellular proteins

검색결과 454건 처리시간 0.027초

Antitumor effects of octyl gallate on hypopharyngeal carcinoma cells

  • NTK, Trang;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.218-224
    • /
    • 2020
  • The antitumor effects of octyl gallate (OG) were investigated on FaDu human hypopharyngeal squamous carcinoma cells. At various concentrations, OG inhibited the proliferation of FaDu cells by suppressing cell cycle regulators and induced apoptosis by activating caspase 3 and its downstream poly (ADP-ribose) polymerase, thereby damaging DNA. Immunoblotting demonstrated that OG significantly suppressed the expression of integrin family proteins (integrin α4, αv, β3, β4), hindering cell adhesion. The reduced expression of integrins subsequently mediated the mitogen-activated protein kinase signaling pathway to stimulate the activation of extracellular signal-regulated kinases and c-jun N-terminal kinases, leading to apoptosis. Thus, OG demonstrated antitumor activity on hypopharyngeal squamous carcinoma cells by suppressing cell proliferation and inducing apoptosis.

Sphingosine-1-phosphate Inhibits Human Keratinocyte Proliferation via Akt/PKB Inactivation

  • Kim, Dong-Seok;Kim, Sook-Young;Kim, Kyu-Han;Park, Kyoung-Chan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.76.2-76.2
    • /
    • 2003
  • Although sphingosine-1-phosphate (S1P) is a well-known mitogen, our results show that S1P potently inhibits keratinocyte proliferation, and that this leads the inhibition of DNA synthesis. Interestingly, the prolonged activation of extracellular signal-regulated protein kinase (ERK) and the transient inactivation of Akt/protein kinase B (PKB) were also oberved in concert with the inhibition of keratinocyte proliferation by S1P. To further verify the anti-proliferative action of S1P, we examined changes in cell cycle related proteins. (omitted)

  • PDF

Micro-and nanofibrous scaffold for enhanced cartilage regeneration

  • Lee, Myung-Hee;Shim, In-Kyong;Hwang, Jung-Hyo;Ahn, Hyun-Jung;Lee, Sang-Hoon;Lee, Myung-Chul;Lee, Seung-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.229.2-230
    • /
    • 2003
  • Extracellular matrix(ECM) is composed of the ground materials(proteoglycan) and nano size diameter fibrous proteins(ex. collagens) that together form a composite-like structure. In this study, fibrous scaffold with biomimetic architecture based on collagen nanofibers interpenetrated in PLGA/chitosan microfibrous matrix. Chitosan was selected for its structure similarity to glycosaminoglycan and neutralizing capacity for PLGA acidic metabolite. Collagen nanofiber were prepared by electrospinning. (omitted)

  • PDF

Nano-scale Proteomics Approach Using Two-dimensional Fibrin Zymography Combined with Fluorescent SYPRO Ruby Dye

  • Choi, Nack-Shick;Yoo, Ki-Hyun;Yoon, Kab-Seog;Maeng, Pil-Jae;Kim, Seung-Ho
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.298-303
    • /
    • 2004
  • In general, a SYPRO Ruby dye is well known as a sensitive fluorescence-based method for detecting proteins by one-or two-dimensional SDS-PAGE (1-DE or 2-DE). Based on the SYPRO Ruby dye system, the combined two-dimensional fibrin zymography (2-D FZ) with SYPRO Ruby staining was newly developed to identify the Bacillus sp. proteases. Namely, complex protein mixtures from Bacillus sp. DJ-4, which were screened from Doen-Jang (Korean traditional fermented food), showed activity on the zymogram gel. The gel spots on the SYPRO Ruby gel, which corresponded to the active spots showing on the 2-D FZ gel, were analyzed by a matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometric analysis. Five intracellular fibrinolytic enzymes of Bacillus sp. DJ-4 were detected through 2-D FZ. The gel spots on the SYPRO Ruby dye stained 2-D gel corresponding to 2-D FZ were then analyzed by MALID TOF MS. Three of the five gel spots proved to be quite similar to the ATP-dependent protease, extracellular neutral metalloprotease, and protease of Bacillus subtilis. Also, the extracellular proteases of Bacillus sp. DJ-4 employing this combined system were identified on three gels (e.g., casein, fibrin, and gelatin) and the proteolytic maps were established. This combined system of 2-D zymography and SYPRO Ruby dye should be useful for searching the specific protease from complex protein mixtures of many other sources (e.g., yeast and cancer cell lines).

Extracellular Matrix of Fresh and Cryopreserved Porcine Aortic Tissues

  • Shon, Yun-Hee
    • BMB Reports
    • /
    • 제30권2호
    • /
    • pp.106-112
    • /
    • 1997
  • The effect of cryopreservation on extracellular matrix was studied with the ultimate objective of permiting a prediction of the tendency of aorta conduit tissue to calcify following transplantation. Cryopreserved and fresh porcine aorta conduit tissues were extracted using guanidine-hydrochloride (Gdn-HCl) followed by sequential digestion of the tissues with collagenase, elastase, and papain. Glycosaminoglycans (GAGs) of the proteoglycans (PGs) were isolated and quantitated. Gdn-HCl extracted about 61% and 62% of the total GAG (proteoqlycan) material from cryopreserved and fresh tissues, respectively. Collagenasesolubilized proteoglycans from Gdn-HCl extracted tissue represented 20% and 13%, respectively, of the total GAGs present in cryopreserved and fresh tissues. Subsequent elastase hydrolysis of collagenase-digested tissue released about 11% of total GAGs from cryopreserved tissue and 16% from fresh tissue. The remaining 8%, from cryopreserved tissue, and 9%, from fresh tissue, of the total GAGs were obtained after using a papain hydrolysis. There was essentially no difference between fresh and cryopreserved tissues in the relative distribution of proteoglycans in the extracts and digestions except in the initial digestion step where more proteoglycans were obtained from collagenase solubilization of cryopreserved tissue than fresh tissue (p<0.05). The histologic status of the fresh and cryopreserved porcine aortic conduit did not differ markedly. The normal tissue architecture was not affected markedly by the cryopreservation procedure as neither alteration of elastic structure, fibrous proteins nor alteration of nuclear distribution or smooth muscle cell morphology was detected. Quantitative tissue mineral studies revealed that the mean calcium content of the cryopreserved aorta conduit tissue $(165{\pm}3\;{\mu}g/g\;wet\;tissue)$ was higher than that of the fresh tissue $(105{\pm}4\;{\mu}g/g\;wet\;tissue)$ $(p<0.05)$. The mean phosphorus content was $703{\pm}35\;{\mu}g$ wet tissue from cryopreserved tissue and $720{\pm}26\;{\mu}g$ wet tissue from fresh tissue. The study indicates that there is no significant alteration in the distribution of PGs in properly cryopreserved tissue, but the total calcium level appears to be increased in tissue cryopreserved by the cryopreservation process used in this study.

  • PDF

Identification of Three Extracellular Proteases from Bacillus subtilis KCTC 3014

  • Choi Nack-Shick;Chung Dong-Min;Ryu Chung-Hun;Yoon Kab-Seog;Maeng Pil-Jae;Kim Seung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.457-464
    • /
    • 2006
  • Three extracellular proteases (Vpr, peptidase T, and subtilisin) were identified from the culture supernatant of Bacillus subtilis KCTC 3014. All the proteins were partially purified as a mature form by using a DEAE-cellulose ion-exchange column chromatography. Their activities were determined by using zymography and densitometry. The relative molecular masses of Vpr and peptidase T (PepT) were determined to be 68 and 48 kDa by SDS-PAGE and zymography, respectively. However, subtilisin formed a 'binding mode' at the top of the separating gel. After denaturation by boiling at $100^{\circ}C$ for 5 min, its molecular mass was determined to be 29 kDa, whereas its activity was lost. The optimal pH of Vpr, PepT, and subtilisin were 9.0, 6.0-7.0, and 7.0-8.0, respectively. The optimal temperature of Vpr, PepT, and subtilisin was 40, 50, and $40^{\circ}C$, respectively. Inhibitor test revealed that Vpr and subtilisin were serine proteases and that PepT was a metalloprotease. Interestingly, we found that Vpr showed no enzyme activity on a 2DE zymogram gel. Three genes, vpr, pepT, and apr (encoding subtilisin protein), were cloned and their nucleotide and deduced amino acid sequences were determined.

Electricity Generation from MFCs Using Differently Grown Anode-Attached Bacteria

  • Nam, Joo-Youn;Kim, Hyun-Woo;Lim, Kyeong-Ho;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • 제15권2호
    • /
    • pp.71-78
    • /
    • 2010
  • To understand the effects of acclimation schemes on the formation of anode biofilms, different electrical performances are characterized in this study, with the roles of suspended and attached bacteria in single-chamber microbial fuel cells (MFCs). The results show that the generation of current in single-chamber MFCs is significantly affected by the development of a biofilm matrix on the anode surface containing abundant immobilized microorganisms. The long-term operation with suspended microorganisms was demonstrated to form a dense biofilm matrix that was able to reduce the activation loss in MFCs. Also, a Pt-coated anode was not favorable for the initial or long-term bacterial attachment due to its high hydrophobicity (contact angle = $124^{\circ}$), which promotes easy detachment of the biofilm from the anode surface. Maximum power ($655.0\;mW/m^2$) was obtained at a current density of $3,358.8\;mA/m^2$ in the MFCs with longer acclimation periods. It was found that a dense biofilm was able to enhance the charge transfer rates due to the complex development of a biofilm matrix anchoring the electrochemically active microorganisms together on the anode surface. Among the major components of the extracellular polymeric substance, carbohydrates ($85.7\;mg/m^2_{anode}$) and proteins ($81.0\;mg/m^2_{anode}$) in the dense anode biofilm accounted for 17 and 19%, respectively, which are greater than those in the sparse anode biofilm.

인공피부배양물(DA-3711)을 이용한 주름개선제 개발 (Development of anti-wrinkle agent with Artificial Skin Culture Broth (DA-3711))

  • 김희정;이미연;안병옥;이정환;김병문;이성희;권종원;김원배
    • 대한화장품학회지
    • /
    • 제30권4호
    • /
    • pp.463-470
    • /
    • 2004
  • 인공피부배양물(DA-3711)은 동아제약의 인공피부배양기술을 활용하여 개발되었으며, 노화된 피부상태를 개선시켜 줄 수 있는 천연의 세포외기질 단백질을 비롯하여 인체성장인자 등의 영양성분을 함유하고 있다 DA-3711의 항노화 효과는 in vitro와 in vivo에서 규명되었으며, 또한 인체 효능 연구 결과에서도 피부탄력을 개선시키고 주름을 감소시키는데 매우 효과적이었다. 즉, DA-3711을 이용한 새로운 주름개선제는 피부재생을 촉진시켜 항노화 및 주름개선 효능을 나타낸다.

키토산이 백서 태자 두개관세포의 세포외기질 발현과 석회화에 미치는 영향 (Effect of chitosan on bone matrix expression and mineralization in primary rat calvarial cell)

  • 김재철;최득철;김영준;정현주;김옥수
    • Journal of Periodontal and Implant Science
    • /
    • 제34권4호
    • /
    • pp.759-769
    • /
    • 2004
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease, however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. The effect of chitosan, a carbohydrate biopolymer extracted from chitin, on periodontal ligament regeneration is of particular interest. The purpose of this study was to evaluate the effect of chitosan on the expression of extracellular matrix proteins in primary rat calvarial cells in Vitro. In the control group, cells was cultured with BGjb media. In the experimental groups, cells were cultured with chitosan in concentration of 0.01, 0.1, 1.0 and 2.0 mg/ml. Then each group was characterized by examining alkaline phosphatase activity at 3 and 7 days, and the ability to produce mineralized nodules of rat calvarial cells at 14 and 21 days. Synthesis of type I collagen (COL-I), osteocalcin (OCN), bone sialoprotein (BSP) was evaluated by RT-PCR at 14 days. The results were as follows: 1. Alkaline phosphatase activity was significantly higher in the concentration of chitosan 0.01mg/ml, 0.1mg/ml and 1.0mg/ml compared to control (p<0.05). 2. The percentage of mineralized bone nodule was more in the concentration of chitosan 0.1mg/ml and 1.0mg/ml than the control. 3. At 14 day culture, the expression of OCN was increased by chitosan in concentration of 1.0 mg/ml and 2.0 mg/ml. These results suggested that chitosan in concentration of 0.1 and 1,0 mg/ml stimulate the extracellular matrix of primary rat calvarial cells and may facilitate the formation of bone.

Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells

  • Shin, Mee-Young;Alcantara, Ethel H.;Park, Youn-Moon;Kwon, Soon-Tae;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제16권4호
    • /
    • pp.291-298
    • /
    • 2011
  • Yam extracts (Dioscorea batatas) have been reported to possess a variety of functions. However, studies on its osteogenic properties are limited. In this study, we investigated the effect of ethanol and water extracts on osteoblast proliferation and bone matrix protein synthesis, type I collagen and alkaline phosphatase (ALP), using osteoblastic MC3T3-E1 cell model. MC3T3-E1 cells were cultured with yam ethanol and water extracts (0~30 mg/L) within 39 days of osteoblast differentiation period. Cell proliferation was measured by MTT assay. Bone matrix proteins were assessed by the accumulation of type I collagen and ALP activity by staining the cell layers for matrix staining. Also, the secreted (media) matrix protein concentration (type I collagen) and enzyme activity (ALP) were measured colorimetrically. Yam ethanol and water extracts stimulated cell proliferation within the range of 15~30 mg/L at 15 day treatment. The accumulation of type I collagen in the extracellular matrix, as well as secreted collagen in the media, increased with increasing doses of yam ethanol (3~15 mg/L) and water (3~30 mg/L) extracts. ALP activity was not affected by yam ethanol extracts. Our results demonstrated that yam extracts stimulated osteoblast proliferation and enhanced the accumulation of the collagenous bone matrix protein type I collagen in the extracellular matrix. These results suggest that yam extracts may be a potential activator for bone formation by increasing osteoblast proliferation and increasing bone matrix protein type I collagen. Before confirming the osteogenic action of yam, further studies for clarifying how and whereby yam extracts can stimulate this ostegenesis action are required.