• Title/Summary/Keyword: Extracellular protein

Search Result 1,168, Processing Time 0.036 seconds

Requirement of EGF Receptor Kinase for Signaling by Calcium-Induced ERK Activation and Neurite Outgrowth in PC12 Cells

  • Park, Jung-Gyu;Jo, Young-Ah;Kim, Yun-Taik;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.468-474
    • /
    • 1998
  • Membrane depolarization in PC12 cells induces calcium influx via an L-type voltage-sensitive calcium channel (L-VSCC) and increases intracellular free calcium, which leads to tyrosine phosphorylation of epidermal growth factor (EGF) receptor and the associated adaptor protein, She. This activated EGF receptor complex then can activate mitogen-activated protein (MAP) kinase, as in nerve growth factor (NGF) receptor activation. In the present study, we investigated the role of EGF receptor in the signaling pathway initiated by membrane depolarization of PC12 cells. Prolonged membrane depolarization induced phosphorylation of extracellular signal-regulated kinase (ERK) within 1 min in undifferentiated PC12 cells. Pretreatment of PC12 cells with the calcium chelator EGTA abolished depolarization-stimulated ERK phosphorylation, but NGF-induced phosphorylation of ERK was not affected. The chronic treatment of phorbol ester, which down-regulated the activity of protein kinase C (PKC), did not affect the phosphorylation of ERK upon depolarization. In the presence of an inhibitor of EGF receptor, neither depolarization nor calcium ionophore increased the level of ERK phosphorylation. These data imply that the EGF receptor is functionally necessary to activate ERK and neurite outgrowth in response to the prolonged depolarization in PC12 cells, and also that PKC is apparently not involved in this signaling pathway.

  • PDF

Isolation of the Microbes Having Cyanobacteria Lytic Activity from Blooming Reservoirs (수화발생 저수지로부터 남조류 분해능을 가지는 미생물의 분리)

  • 신규철;한명수;최영길
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.20-24
    • /
    • 2002
  • We have from water samples of Kwalim, Dochang, and Mulwang reservoirs in Kyonggi-Do, where cyanobacteria blooming occurred. Isolated microbes which have lytic activity for cyanobacteria. Water samples were smeared on the Anabaena cylindrica lawn and incubated in light chamber at $28^\circ{C}$, under 3000 lux for 13 days. A fungus having cyanobacterial lytic activity was isolated from the samples of Dochang reservoir. The isolate was identified as Cryptococcus laurentii by Vitek system. From the culture of the isolate, four major extracellular protein bands (29, 35.2, 40.9, 51.1 kDa) have been detected and the 29 kDa protein band was more thickly appeared in the culture with cyanobacteria.

A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder

  • Komachali, Sajad Rafiee;Sheikholeslami, Mozhgan;Salehi, Mansoor
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.24.1-24.8
    • /
    • 2022
  • Hypomyelinating leukodystrophy type 2 (HLD2), is an inherited genetic disease of the central nervous system caused by recessive mutations in the gap junction protein gamma 2 (GJC2/GJA12). HLD2 is characterized by nystagmus, developmental delay, motor impairments, ataxia, severe speech problem, and hypomyelination in the brain. The GJC2 sequence encodes connexin 47 protein (Cx47). Connexins are a group of membrane proteins that oligomerize to construct gap junctions protein. In the present study, a novel missense mutation gene c.760G>A (p.Val254Met) was identified in a patient with HLD2 by performing whole exome sequencing. Following the discovery of the new mutation in the proband, we used Sanger sequencing to analyze his affected sibling and parents. Sanger sequencing verified homozygosity of the mutation in the proband and his affected sibling. The autosomal recessive inheritance pattern was confirmed since Sanger sequencing revealed both healthy parents were heterozygous for the mutation. PolyPhen2, SIFT, PROVEAN, and CADD were used to evaluate the function prediction scores of detected mutations. Cx47 is essential for oligodendrocyte function, including adequate myelination and myelin maintenance in humans. Novel mutation p.Val254Met is located in the second extracellular domain of Cx47, both extracellular loops are highly conserved and probably induce intramolecular disulfide interactions. This novel mutation in the Cx47 gene causes oligodendrocyte dysfunction and HLD2 disorder.

Characterization of the Putative Membrane Fusion Peptides in the Envelope Proteins of Human Hepatitis B Virus

  • Kang, Ha-Tan;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1756-1762
    • /
    • 2007
  • Envelope proteins of virus contain a segment of hydrophobic amino acids, called as fusion peptide, which triggers membrane fusion by insertion into membrane and perturbation of lipid bilayer structure. Potential fusion peptide sequences have been identified in the middle of L or M proteins or at the N-terminus of S protein in the envelope of human hepatitis B virus (HBV). Two 16-mer peptides representing the N-terminal fusion peptide of the S protein and the internal fusion peptide in L protein were synthesized, and their membrane disrupting activities were characterized. The internal fusion peptide in L protein showed higher activity of liposome leakage and hemolysis of human red blood cells than the N-terminal fusion peptide of S protein. Also, the membrane disrupting activity of the extracellular domain of L protein significantly increased when the internal fusion peptide region was exposed to N-terminus by the treatment of V8 protease. These results indicate that the internal fusion peptide region of L protein could activate membrane fusion when it is exposed by proteolysis.

Freeze Tolerance Enhanced by Antifreeze Protein in Plant

  • Hwang, Cheol-Ho;Park, Hyun-Woo;Min, Sung-Ran;Liu, Jang-Ryol
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.339-343
    • /
    • 2000
  • When plants are exposed to subfreezing temperatures ice crystals are forming within extracelluar space in leaves. The growth of ice crystal is closely related to the degree of freezing injury. It was shown that an antifreeze protein binds to an ice nucleator through hydrogen bonds to prevent growth of ice crystal and also reduces freezing damage. The antifreeze proteins in plants are similar to PR proteins but only the PR proteins induced upon cold acclimation were shown to have dual functions in antifreezing as well as antifungal activities. Three of the genes encoded for CLP, GLP, and TLP were isolated from barley and Kentucky bluegrass based on amino acid sequence revealed after purification and low temperature-inducibility as shown in analysis of the protein. The deduced amino acid of the genes cloned showed a signal for secretion into extracellular space where the antifreezing activity sup-posed to work. The western analysis using the antisera raised against the antifreeze proteins showed a positive correlation between the amount of the protein and the level of freeze tolerance among different cultivars of barely. Besides it was revealed that TLP is responsible for a freeze tolerance induced by a treatment of trinexapac ethyl in Kentucky bluegrass. Analysis of an overwintering wild rice, Oryza rufipogon also showed that an acquisition of freeze tolerance relied on accumulation of the protein similar to CLP. The more direct evidence for the role of CLP in freeze tolerance was made with the analysis of the transgenic tobacco showing extracellular accumulation of CLP and enhanced freeze tolerance measured by amount of ion leakage and rate of photosynthetic electron transport upon freezing. These antifreeze proteins genes will be good candidates for transformation into crops such as lettuce and strawberry to develop into the new crops capable of freeze-storage and such as rose and grape to enhance a freeze tolerance for a safe survival during winter.

  • PDF

Ginsenoside Rh2 inhibiting HCT116 colon cancer cell proliferation through blocking PDZ-binding kinase/T-LAK cell-originated protein kinase

  • Yang, Jianjun;Yuan, Donghong;Xing, Tongchao;Su, Hongli;Zhang, Shengjun;Wen, Jiansheng;Bai, Qiqiang;Dang, Dongmei
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.400-408
    • /
    • 2016
  • Background: Ginsenoside Rh2 (GRh2) is the main bioactive component in American ginseng, a commonly used herb, and its antitumor activity had been studied in previous studies. PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), a serine/threonine protein kinase, is highly expressed in HCT116 colorectal cancer cells. Methods: We examined the effect of GRh2 on HCT116 cells ex vivo. Next, we performed in vitro binding assay and in vitro kinase assay to search for the target of GRh2. Furthermore, we elucidated the underlying molecular mechanisms for the antitumor effect of GRh2 ex vivo and in vivo. Results: The results of our in vitro studies indicated that GRh2 can directly bind with PBK/TOPK and GRh2 also can directly inhibit PBK/TOPK activity. Ex vivo studies showed that GRh2 significantly induced cell death in HCT116 colorectal cancer cells. Further mechanistic study demonstrated that these compounds inhibited the phosphorylation levels of the extracellular regulated protein kinases 1/2 (ERK1/2) and (H3) in HCT116 colorectal cancer cells. In vivo studies showed GRh2 inhibited the growth of xenograft tumors of HCT116 cells and inhibited the phosphorylation levels of the extracellular regulated protein kinases 1/2 and histone H3. Conclusion: The results indicate that GRh2 exerts promising antitumor effect that is specific to human HCT116 colorectal cancer cells through inhibiting the activity of PBK/TOPK.

The effects of succinylacetone on synthesis of protoporphyrin IX and cell growth of Myxococcus xanthus (Myxococcus xanthus의 protoporphyrin IX의 합성과 세포 성장에 대한 succinylacetone의 영향)

  • 이병욱
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.814-821
    • /
    • 2003
  • Protoporphyrin IX is an intermediate molecule in the heme biosynthetic pathway. Intra- and extracellular concentrations of protoporphyrin IX in the wild type strain, Myxococcus xanthus DK1622 were measured by reverse phase HPLC. The amount of intracellular protoporphyrin IX continuously increased and reached 6.4 picomoles/mg of protein at the stationary phase. Extracellular protoporphyrin IX began to be detected from the mid-exponential phase. The culture supernatant that was collected in the stationary phase contained approximately 3.0 picomoles of proto-porphyrin IX per mg of protein. Spores formed by nutrient depletion contained about 6.5 picomole protoporphyrin IX/mg of protein. The synthesis of protoporphyrin IX and cell growth were strongly inhibited by addition of succinylacetone to a final concentration of $500\muM$. Succinylacetone, however did not appear to interfere developmental processes. Normal developmental behaviors including aggregation and spore formation was achieved even if succinylacetone was added in a medium. Photolysis among cells grown on a starvation medium supplemented with succinylacetone was also observed. These results indicate that protoporphyrin IX may be important to M. ,xanthus vegetative growth, but not critical to development processes.

Production and Characteristics of an Extracellular Pigment through the Submerged Cultivation of Phellinus Sp. (Phellinus SP.의 액체배양에 의한 세포외 색소물질의 생산 및 특성)

  • Lee, Dong-Ki;Lee, Chul-Won;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • An extracellular pigment production of three Phellinus sp. (Phellinus 421, P. linteus and P. hartigil) through submerged cultivation was investigated. The maximum brown pigment from culture broth was obtained from the precipitate by addition of 10% 1M HCI solution. This precipitate showed absorption characteristics with ${\lambda}_{max}$ of 360nm. The maximum production of extracellular pigment obtained at optimum medium and culture condition was 3.54 ($A_{360}$). The precipitate was fractionated by Sephadex G-75 gel chromatography, and the isolated brown pigment contained a large amount of polyphenol and the small amounts of sugar and protein. The brown pigment fraction was stable in temperature range of $30{\sim}60^{\circ}C$, pH range of $4{\sim}6$, sugar addition ranges of $1{\sim}5%$ and salt addition concentration of 3 molarity. Antioxidative activity of the brown pigment by TBA method was better than that of vitamin E (${\alpha}$-tocopherol).

Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering

  • Coburn, Jeannine;Gibson, Matt;Bandalini, Pierre Alain;Laird, Christopher;Mao, Hai-Quan;Moroni, Lorenzo;Seliktar, Dror;Elisseeff, Jennifer
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.213-222
    • /
    • 2011
  • The native extracellular matrix (ECM) consists of an integrated fibrous protein network and proteoglycan-based ground (hydrogel) substance. We designed a novel electrospinning technique to engineer a three dimensional fiber-hydrogel composite that mimics the native ECM structure, is injectable, and has practical macroscale dimensions for clinically relevant tissue defects. In a model system of articular cartilage tissue engineering, the fiber-hydrogel composites enhanced the biological response of adult stem cells, with dynamic mechanical stimulation resulting in near native levels of extracellular matrix. This technology platform was expanded through structural and biochemical modification of the fibers including hydrophilic fibers containing chondroitin sulfate, a significant component of endogenous tissues, and hydrophobic fibers containing ECM microparticles.

Effects of Extracellular Matrix Protein-derived Signaling on the Maintenance of the Undifferentiated State of Spermatogonial Stem Cells from Porcine Neonatal Testis

  • Park, Min Hee;Park, Ji Eun;Kim, Min Seong;Lee, Kwon Young;Hwang, Jae Yeon;Yun, Jung Im;Choi, Jung Hoon;Lee, Eunsong;Lee, Seung Tae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1398-1406
    • /
    • 2016
  • In general, the seminiferous tubule basement membrane (STBM), comprising laminin, collagen IV, perlecan, and entactin, plays an important role in self-renewal and spermatogenesis of spermatogonial stem cells (SSCs) in the testis. However, among the diverse extracellular matrix (ECM) proteins constituting the STBM, the mechanism by which each regulates SSC fate has yet to be revealed. Accordingly, we investigated the effects of various ECM proteins on the maintenance of the undifferentiated state of SSCs in pigs. First, an extracellular signaling-free culture system was optimized, and alkaline phosphatase (AP) activity and transcriptional regulation of SSC-specific genes were analyzed in porcine SSCs (pSSCs) cultured for 1, 3, and 5 days on non-, laminin- and collagen IV-coated Petri dishes in the optimized culture system. The microenvironment consisting of glial cell-derived neurotrophic factor (GDNF)-supplemented mouse embryonic stem cell culture medium (mESCCM) (GDNF-mESCCM) demonstrated the highest efficiency in the maintenance of AP activity. Moreover, under the established extracellular signaling-free microenvironment, effective maintenance of AP activity and SSC-specific gene expression was detected in pSSCs experiencing laminin-derived signaling. From these results, we believe that laminin can serve as an extracellular niche factor required for the in vitro maintenance of undifferentiated pSSCs in the establishment of the pSSC culture system.