• 제목/요약/키워드: Extracellular matrix (ECM)

검색결과 209건 처리시간 0.024초

섬유아세포에서 세포 활성 촉진 및 광노화 억제 효능을 보이는 신규 헵타펩타이드 (A Novel Heptapeptide that Promotes Cellular Activity and Inhibits Photoaging in Fibroblasts)

  • 이응지;강한아;황보별;정용지;김은미
    • 대한화장품학회지
    • /
    • 제48권2호
    • /
    • pp.157-167
    • /
    • 2022
  • 본 연구에서는 7 개의 아미노산으로 이루어진 헵타펩타이드의 섬유아세포 활성 증가 및 광노화 조건에서의 세포 손상 억제 효과를 확인하였다. 실험 결과 헵타펩타이드 처리 시 섬유아세포 증식 및 세포외기질(extracellular matrix, ECM) 구성 인자의 발현이 증가되었다. 그리고 자외선 A (ultraviolet A, UVA) 조사에 의해 유도된 광노화조건에서 감소된 세포 생존율이 헵타펩타이드에 의해 증가되었고, UVA 조사에 의해 유도된 세포 사멸, 기질금속단백질분해효소-1(matrix metalloproteinases-1, MMP-1) 발현 및 세포 내 활성산소종(reactive oxygen species, ROS) 수준이 헵타펩타이드에 의해 감소되었다. UVA 조사 시 나타나는 transforming growth factor-β (TGF-β)/smad 기전 억제와 그에 따른 ECM 구성 인자 발현 감소 또한 헵타펩타이드에 의해 회복되었다. 또 다른 광노화 유도 조건으로 heat shock을 주었고 헵타펩타이드를 전 처리 하였을 때 heat shock에 의한 mitogen-activated protein kinase (MAPK) 인산화 및 MMP-1 발현이 억제됨을 확인할 수 있었다. 이 결과를 종합해 볼 때, 본 연구의 헵타펩타이드는 섬유아세포의 활성을 촉진하며, 광노화 유도 모델로 사용된 UVA 조사 및 heat shock 조건에서도 세포 내 ROS 억제 효과를 보여 세포 손상에 대한 회복 및 보호 효과를 나타내는 것으로 보인다. 이러한 진피 보호 효과를 갖는 헵타펩타이드는 향 후 신규 화장품 소재로 응용될 수 있을 것으로 기대된다.

Effect of N-Acetylcysteine on the Matrix Metalloproteinases and Their Inhibitors in Carbon Tetrachloride-Induced Hepatotoxicity

  • N, Kamalakkannan;Al-Numair, Khalid S.;Al-Assaf, Abdullah H.;Al-Shatwi, Ali A.;Vp, Menon
    • Preventive Nutrition and Food Science
    • /
    • 제14권1호
    • /
    • pp.14-20
    • /
    • 2009
  • Matrix metalloproteinases (MMPs) are a group of zinc proteases that serve the function of breaking down extracellular matrix (ECM). The present study evaluated the role of N-acetylcysteine (NAC) on the increased deposition of ECM in hepatic and glomerular fibrosis caused by carbon tetrachloride ($CCl_4$). The activity of MMPs increased and the levels of tissue inhibitors of metalloproteinases 1 and 2 (TIMP-1 and TIMP-2) decreased in the liver and kidney of $CCl_4$-treated rats. Rats treated with $CCl_4$ and NAC showed increased activities of MMPs and decreased levels of TIMP-1 and TIMP-2 in the liver and kidney. Treatment with NAC resulted in the effective degradation of ECM due to an increase in the activities of MMPs and a decrease in the levels of TIMPs.

Caveolin-1 inhibits membrane-type 1 matrix metalloproteinase activity

  • Kim, Hye-Nan;Chung, Hye-Shin
    • BMB Reports
    • /
    • 제41권12호
    • /
    • pp.858-862
    • /
    • 2008
  • Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent proteinase found in cholesterol-rich lipid rafts on the plasma membrane. MT1-MMP hydrolyzes extracellular matrix (ECM) proteins, activates pro-matrix metalloproteinase-2 (proMMP-2) and plays an important role in ECM remodeling, cancer cell migration and metastasis. The role of caveolin-1, an integral protein of caveolae, in the activation of MT1-MMP remains largely unknown. Here, we show that the expression of caveolin-1 attenuates the activation of proMMP-2, reduces proteolytic cleavage of ECM and inhibits cell migration. We utilized the cytoplasmic tail domain deletion (${\Delta}CT$) or the E240A mutant of MT1-MMP. Co-expression of caveolin-1 with the wild-type or the ${\Delta}CT$ MT1-MMP decreased the proMMP-2 activation and inhibited collagen degradation and cell migration. Caveolin-1 had no effect on the catalytically inert E240A MT1-MMP. Our findings suggest that caveolin-1 is essential in the down-regulation of MT1-MMP activity by promoting internalization from the cell surface.

Pleiotropic Roles of Metalloproteinases in Hematological Malignancies: an Update

  • Chaudhary, Ajay K;Chaudhary, Shruti;Ghosh, Kanjaksha;Nadkarni, A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3043-3051
    • /
    • 2016
  • Controlled remodeling of the extracellular matrix (ECM) is essential for cell growth, invasion and metastasis. Matrix metalloproteinases (MMPs) are a family of secreted, zinc-dependent endopeptidases capable of degradation of ECM components. The expression and activity of MMPs in a variety of human cancers have been intensively studied. They play important roles at different steps of malignant tumor formation and have central significance in embryogenesis, tissue remodeling, inflammation, angiogenesis and metastasis. However, increasing evidence demonstrates that MMPs are involved earlier in tumorigenesis. Recent studies also suggest that MMPs play complex roles in tumor progression. MMPs and membrane type (MT)-MMPs are potentially significant therapeutic targets in many cancers, so that designing of specific MMP inhibitors would be helpful for clinical trials. Here, we review the pleiotropic roles of the MMP system in hematological malignancies in-vitro and in-vivo models.

Biomimetic Electrospun Fibers for Tissue Engineering Applications

  • 신흥수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.2.2-2.2
    • /
    • 2011
  • The central strategy in tissue engineering involves a biomaterial scaffold as a delivery carrier of cells and a depot to deliver bioactive molecules. The ability of scaffolds to control cellular response to direct particular repair and regeneration processes is essential to obtain functional tissue engineering constructs. Therefore, many efforts have been made to understand local interactions of cells with their extracellular matrix (ECM) microenvironment and exploit these interactions for designing an ideal scaffold mimicking the chemical, physiological, and structural features of native ECM. ECM is composed of a number of biomacromolecules including proteins, glycosaminoglycans, and proteoglycans, which are assembled together to form complex 3-dimensional network. Electrospinning is a process to generate highly porous 3-dimensional fibrous structure with nano to micro scaled-diameter, which can closely mimic the structure of ECM. In this presentation, our approaches to develop biomimetic electrospun fibers for modulation of cell function will be discussed.

  • PDF

Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model

  • Zhang, Zhidong;Zou, Gangqiang;Chen, Xiaosan;Lu, Wei;Liu, Jianyang;Zhai, Shuiting;Qiao, Gang
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.218-227
    • /
    • 2019
  • This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient ($ApoE^{-/-}$) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.

노화 쥐 성대의 조직학적 분석 (Histologic Analysis of Vocal Folds in Aging Rats)

  • 신성찬;김지민;권현근;천용일;이병주
    • 대한후두음성언어의학회지
    • /
    • 제31권2호
    • /
    • pp.66-70
    • /
    • 2020
  • Background and Objectives Presbyphonia is characterized by hoarse, breathy, weak vocal intensity. Extracellular matrix (ECM) in lamina propria (LP) of the vocal folds play an important role in voice production, and change of ECM according to the aging leads to the presbyphonia. The aim of this study was to investigate the histologic analysis of aging vocal fold of rat. Materials and Method Six and twenty two months old Sprague-Dawley rats (n=8, each group) were used and classified into young (six months old rats) and old (twenty two months old rats) group. Histologic analysis and immunohistochemical staining for ECM of LP were performed. Results Overall cellular density was significantly decreased in old rat group. Elastin fibers of LP were significantly decreased in old rat group. Type I collagen was significantly increased in old rat group. Type III collagen did not show significant difference. Hyaluronic acids did not show significant difference in Alcian blue staining and immunohistochemical staining. Conclusion Decreased general cellular density and elastin fiber and increased type I collagen were observed in the LP of vocal folds of aging rats. These ECM changes might to contribute the aging voice.

Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells

  • Shrestha, Pravesh;Yun, Ji-Hye;Kim, Woo Taek;Kim, Tae-Yoon;Lee, Weontae
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.242-249
    • /
    • 2016
  • A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.

성게 생식소 유래 세포외소포체 특성 분석 및 신경세포에 미치는 영향 연구 (Characterization of Sea Urchin Gonad-derived Extracellular Vesicles and Study of Their Effects on Nerve Cells)

  • 최병훈;조성한;박상혁
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권1호
    • /
    • pp.20-25
    • /
    • 2024
  • Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by cells. EVs act as messengers for cell-to-cell communication. Inside, it contains various substances that show biological activity, such as proteins, lipids, nucleic acids, and metabolites. The study of EVs extracted from terrestrial organisms and stem cells on inflammatory environments and tissue regeneration have been actively conducted. However, marine organisms-derived EVs are limited. Therefore, we have extracted EVs from sea urchins belonging to the Echinoderm group with their excellent regenerative ability. First, we extracted extracellular matrix (ECM) from sea urchin gonads treated with hypotonic buffer, followed by collagenase treatment, and filtration to collect ECM-bounded EVs. The size of sea urchin gonad-derived EVs (UGEVs) is about 20-100 nm and has a round shape. The protein content was higher after EVs burst than before, which is evidence that proteins are contained inside. In addition, proteins of various sizes are distributed inside. PKH-26 was combined with UGEVs, which means that UGEVs have a lipid membrane. PHK-26-labeled UGEVs were successfully uptaken by cells. UGEVs can be confirmed to have the same characteristics as traditional EVs. Finally, it was confirmed that Schwann cells were not toxic by increasing proliferation after treatment.

Matrix Metalloproteinases and Cancer - Roles in Threat and Therapy

  • Yadav, Lalita;Puri, Naveen;Rastogi, Varun;Satpute, Pranali;Ahmad, Riyaz;Kaur, Geetpriya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1085-1091
    • /
    • 2014
  • Matrix metalloproteinases (MMPs) are a family of zinc dependent extracellular matrix (ECM) remodelling endopeptidases having the ability to degrade almost all components of extracellular matrix and implicated in various physiological as well as pathological processes. Carcinogenesis is a multistage process in which alteration of the microenvironment is required for conversion of normal tissue to a tumour. Extracellular matrix remodelling proteinases such as MMPs are principal mediators of alterations observed in the microenvironment during carcinogenesis and according to recent concepts not only have roles in invasion or late stages of cancer but also in regulating initial steps of carcinogenesis in a favourable or unfavourable manner. Establishment of relationships between MMP overproduction and cancer progression has stimulated the development of inhibitors that block proteolytic activity of these enzymes. In this review we discuss the MMP general structure, classification, regulation roles in relation to hallmarks of cancer and as targets for therapeutic intervention.