• 제목/요약/키워드: Extracellular glutamate release

검색결과 11건 처리시간 0.019초

The Effect of Extracellular Glutamate Release on Repetitive Transient Ischemic Injury in Global Ischemia Model

  • Lee, Gi-Ja;Choi, Seok-Keun;Eo, Yun-Hye;Kang, Sung-Wook;Choi, Sam-Jin;Park, Jeong-Hoon;Lim, Ji-Eun;Hong, Kyung-Won;Jin, Hyun-Seok;Oh, Berm-Seok;Park, Hun-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권1호
    • /
    • pp.23-26
    • /
    • 2009
  • During operations, neurosurgeons usually perform multiple temporary occlusions of parental artery, possibly resulting in the neuronal damage. It is generally thought that neuronal damage by cerebral ischemia is associated with extracellular concentrations of the excitatory amino acids. In this study, we measured the dynamics of extracellular glutamate release in 11 vessel occlusion(VO) model to compare between single occlusion and repeated transient occlusions within short interval. Changes in cerebral blood flow were monitored by laser-Doppler flowmetry simultaneously with cortical glutamate level measured by amperometric biosensor. From real time monitoring of glutamate release in 11 VO model, the change of extracellular glutamate level in repeated transient occlusion group was smaller than that of single occlusion group, and the onset time of glutamate release in the second ischemic episode of repeated occlusion group was delayed compared to the first ischemic episode which was similar to that of single 10 min ischemic episode. These results suggested that repeated transient occlusion induces less glutamate release from neuronal cell than single occlusion, and the delayed onset time of glutamate release is attributed to endogeneous protective mechanism of ischemic tolerance.

Neuroprotective Effects by Nimodipine Treatment in the Experimental Global Ischemic Rat Model: Real Time Estimation of Glutamate

  • Choi, Seok-Keun;Lee, Gi-Ja;Choi, Sam-Jin;Kim, Youn-Jung;Park, Hun-Kuk;Park, Bong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제49권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Objective: Glutamate is a key excitatory neurotransmitter in the brain, and its excessive release plays a key role in the development of neuronal injury. In order to define the effect of nimodipine on glutamate release, we monitored extracellular glutamate release in real-time in a global ischemia rat model with eleven vessel occlusion. Methods: Twelve rats were randomly divided into two groups: the ischemia group and the nimodipine treatment group. The changes of extracellular glutamate level were measured using microdialysis amperometric biosensor, in coincident with cerebral blood flow (CBF) and electroencephalogram. Nimodipine (0.025 ${\mu}g$/100 gm/min) was infused into lateral to the CBF probe, during the ischemic period. Also, we performed Nissl staining method to assess the neuroprotective effect of nimodipine. Results: During the ischemic period, the mean maximum change in glutamate concentration was $133.22{\pm}2.57\;{\mu}M$ in the ischemia group and $75.42{\pm}4.22\;{\mu}M$ (p<0.001) in the group treated with nimodipine. The total amount of glutamate released was significantly different (P<0.001) between groups during the ischemic period. The %cell viability in hippocampus was $47.50{\pm}5.64$ (p<0.005) in ischemia group, compared with sham group. But, the %cell viability in nimodipine treatment group was $95.46{\pm}6.60$ in hippocampus (p<0.005). Conclusion: From the real-time monitoring and Nissl staining results, we suggest that the nimodipine treatment is responsible for the protection of the neuronal cell death through the suppression of extracellular glutamate release in the 11-VO global ischemia model of rat.

Nitric Oxide Synthase Inhibitor Decreases NMDA-Induced Elevations of Extracellular Glutamate and Intracellular $Ca^{2+}$ Levels Via a cGMP-Independent Mechanism in Cerebellar Granule Neurons

  • Oh, Sei-Kwan;Yun, Bong-Sik;Ryoo, In-Ja;Patrick P.McCaslin;Yoo, Ick-Dong
    • Archives of Pharmacal Research
    • /
    • 제22권1호
    • /
    • pp.48-54
    • /
    • 1999
  • These studies were designed to examine the differential effect of nitric oxide (NO) and cGMP on glutamate neurotransmission. In primary cultures of rat cerebellar granule cells, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulates the elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), the release of glutamate, the synthesis of NO and an increase of cGMP. Although NO has been shown to stimulate guanylyl cyclase, it is unclear yet whether NO alters the NMDA-induced glutamate release and ${[Ca^{2+}]}_i$ elevation. We showed that the NO synthase inhibitor, NG-monomethyl-L-arginine (NMMA), partially prevented the NMDA-induced release of glutamate and elevation of ${[Ca^{2+}]}_i$ and completely blocked the elevation of cGMP. These effects of NO on glutamate release and [Ca2+]i elevation were unlikely to be secondary to cGMP as the cGMP analogue, dibutyryl cGMP (dBcGMP), did not suppress the effects of NMDA. Rather, dBcGMP slightly augmented the NMDA-induced elevation of ${[Ca^{2+}]}_i$ with no change in the basal level of glutamate or ${[Ca^{2+}]}_i$. The extracellular NO scavenger hydroxocobalamine prevented the NMDA-induced release of glutamate providing indirect evidence that the effect of NO may act on the NMDA receptor. These results suggest that low concentration of NO has a role in maintaining the NMDA receptor activation in a cGMP-independent manner.

  • PDF

Effects of Oxygen Free Radicals on Extracellular Glutamate Accumulation in Cultured Cells

  • Shin, Chang-Sik;Oh, Seikwan;Lee, Myung-Koo;Lee, Myung-Koo;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • 제19권2호
    • /
    • pp.132-136
    • /
    • 1996
  • Exogenously applied oxygen free radical generating agent, pyrogallol, highly elevated extracellular glutamate accumulation and augmented N-methyl-D-aspartate (NMDA)-induced glutamate accumulation in cerebellar granule neuronal cells, but did not in astrocytes. Superoxide dismutase remarkably decreased the pyrogallol-induced glutamate accumulation, but either NMDA or kainate antagonists did not. In addition, pyrogallol did not affect the NMDAinduced intracellular calcium elevation. Pyrogallol partially blocked glutamate uptake into astrocytes. These results suggest that oxygen free radicals elevate extracellular glutamate accumulation by stimulating the release of glutamate as well as blocking the glutamate uptake.

  • PDF

The Time Course of NMDA-and Kainate-induced cGMP Elevation and Glutamate Release in Cultured Neuron

  • Oh, Sei-Kwan;Shin, Chang-Sik;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • 제18권3호
    • /
    • pp.153-158
    • /
    • 1995
  • The levels of extracellualr glutamate, intracellular $Ca^{2+}\;([Ca2+]_i)$ and cGMP were determined for 1 h with the excitatory amino acids, N-methyl-D-aspartate (NMDA) or kainate in cultured cerebellar granule cells. Both NMDA and kainate produced a time-dependent release of glutamate, and kainate was more potent than NMDA in glutamate elevation. The elevation of extracellular glutamate was not purely governed by intracellular $Ca^{2+}$ concentration. However, in opposite to the time-dependent elevation of glutamate, the elevation of cGMP by NMDA and kainate were at maximum level in short-time (1 min) incubation then remarkably decreased with longer incubation times. Post-applications (30 min after agonist) of EAA antagonist did not block EAAs-induced glutamate elevation. However, NMDA antagonist, phencyclidine (PCP), blocked NMDA-induced cGMP elevation at pre- or post-application, but kainate antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), paradoxically augmented kainate-induced cGMP elevation for 1 h incubation. These results show that NMDA or kainate induces time-dependent elevations of extracellular glutamate, while the elevations of cGMP by these EAAs are remarkably decreased with longer incubation times. However, NMDA- arid kainate-indcued glutamate release was blocked by pre-application of each receptor antagonist but not by post-application while EAA-induced $[Ca^{2+}]_i$ was blocked by post-application of antagonist. These observations suggest that EAA-induced elevation of $[Ca^{2+}]_i$ is not parallel with elevation of glutamate release or cGMP.

  • PDF

Kainate-induced Elevations of Intracellular $Ca^{2+}$ and Extracellular Glutamate are Partially Decreased by NMDA Receptor Antagonists in Cultured Cerebellar Granule Neurons

  • Oh, Seikwan;Shogo-Tokuyama;Patrick P.McCaslin
    • Archives of Pharmacal Research
    • /
    • 제18권6호
    • /
    • pp.391-395
    • /
    • 1995
  • Several lines of evidence indicate that physiological activity of N-methyl-D-aspartate (NMDA) receptor was blocked by physiological concentration of $Mg^{2+}$ (1.2 mM). However, the activity of NMDA receptor may not be blocked totally with this concentration of $Mg^{2+}$ under elevated membrane potential by kainate. Here, we described the effect of $Mg^{2+}$ on NMDA receptor and how much of NMDA receptor functions could be activated by kainate. Effects of NMDA receptor antagonist on kainate-induced elevation of intracellualr $Ca^{2+}$ levels $([Ca^{2+}]_i)$ and extracellular glutamate level were examined in cultured rat cerebellar granule neurons. kainate-induced elevation of $([Ca^{2+}]_i)$ was not affected by physiological concentration of $Mg^{2+}$. Kainate-induced NMDA-induced elevation was blocked by the same concentration of $MG^{2+}$Kainate-induced elevation of [$([Ca^{2+}]_i)$ was decreased by 32% in the presence of NMDA antagonists, MK-801 and CPP (3-[2-carboxypiperazine-4-yl]propyl-1-phosphonic acid), in $Mg^{2+}$ free buffer. Kainate receptor-activated gluamate release was also decreased (30%) by MK-801 or CPP. These resuts show that certain extent of elevations of intracellular $Ca^{2+}$ and extracellular glutamate by kainate is due to coativation of NMDA receptors.

  • PDF

Eupafolin Suppresses P/Q-Type Ca2+ Channels to Inhibit Ca2+/Calmodulin-Dependent Protein Kinase II and Glutamate Release at Rat Cerebrocortical Nerve Terminals

  • Chang, Anna;Hung, Chi-Feng;Hsieh, Pei-Wen;Ko, Horng-Huey;Wang, Su-Jane
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.630-636
    • /
    • 2021
  • Eupafolin, a constituent of the aerial parts of Phyla nodiflora, has neuroprotective property. Because reducing the synaptic release of glutamate is crucial to achieving pharmacotherapeutic effects of neuroprotectants, we investigated the effect of eupafolin on glutamate release in rat cerebrocortical synaptosomes and explored the possible mechanism. We discovered that eupafolin depressed 4-aminopyridine (4-AP)-induced glutamate release, and this phenomenon was prevented in the absence of extracellular calcium. Eupafolin inhibition of glutamate release from synaptic vesicles was confirmed through measurement of the release of the fluorescent dye FM 1-43. Eupafolin decreased 4-AP-induced [Ca2+]i elevation and had no effect on synaptosomal membrane potential. The inhibition of P/Q-type Ca2+ channels reduced the decrease in glutamate release that was caused by eupafolin, and docking data revealed that eupafolin interacted with P/Q-type Ca2+ channels. Additionally, the inhibition of calcium/calmodulin-dependent protein kinase II (CaMKII) prevented the effect of eupafolin on evoked glutamate release. Eupafolin also reduced the 4-AP-induced activation of CaMK II and the subsequent phosphorylation of synapsin I, which is the main presynaptic target of CaMKII. Therefore, eupafolin suppresses P/Q-type Ca2+ channels and thereby inhibits CaMKII/synapsin I pathways and the release of glutamate from rat cerebrocortical synaptosomes.

Subacute Nicotine Exposure in Cultured Cerebellar Cells Increased the Release and Uptake of Glutamate

  • Lim, Dong-Koo;Park, Sun-Hee;Choi, Woo-Jeoung
    • Archives of Pharmacal Research
    • /
    • 제23권5호
    • /
    • pp.488-494
    • /
    • 2000
  • Cerebellar granule and glial cells prepared from 7 day-old rat pups were used to investigate the effects of sub-acute nicotine exposure on the glutamatergic nervous system. These cells were exposed to nicotine in various concentrations for 2 to 10 days in situ. Nicotine-exposure did not result in any changes in cerebellar granule and glial cell viability at concentrations of up to 500 $\mu\textrm{M}$. In cerebellar granule cells, the basal extracellular levels of glutamate, aspartate and glycine were enhanced in the nicotine-exposed granule cells. In addition, the responses of N-methyl-D-aspartate (NMDA)-induced glutamate release were enhanced at low NMDA concentrations in the nicotine-exposed granule cells. However, this decreased at higher NMDA concentrations. The glutaminase activity was increased after nicotine exposure. In cerebellar glial cells, glutamate uptake in the nicotine-exposed glial cells were either increased at low nicotine exposure levels or decreased at higher levels. The inhibition of glutamate uptake by L-trans-pyrollidine-2,4-dicarboxylic acid (PDC) was lower in glial cells exposed to 50 $\mu\textrm{M}$ nicotine. Glutamine synthetase activity was lower in glial cells exposed to 100 or 500 $\mu\textrm{M}$ of nicotine. These results indicate that the properties of cerebellar granule and glial cells may alter after subacute nicotine exposure. Furthermore, they suggest that nicotine exposure during development may modulate glutamatergic nervous activity.

  • PDF

Analysis of the Baroreceptor and Vestibular Receptor Inputs in the Rostral Ventrolateral Medulla following Hypotension in Conscious Rats

  • Lan, Yan;Lu, Huan-Jun;Jiang, Xian;Li, Li-Wei;Yang, Yan-Zhao;Jin, Guang-Shi;Park, Joo Young;Kim, Min Sun;Park, Byung Rim;Jin, Yuan-Zhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.159-165
    • /
    • 2015
  • Input signals originating from baroreceptors and vestibular receptors are integrated in the rostral ventrolateral medulla (RVLM) to maintain blood pressure during postural movement. The contribution of baroreceptors and vestibular receptors in the maintenance of blood pressure following hypotension were quantitatively analyzed by measuring phosphorylated extracellular regulated protein kinase (pERK) expression and glutamate release in the RVLM. The expression of pERK and glutamate release in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or sinoaortic denervation (SAD) following hypotension induced by a sodium nitroprusside (SNP) infusion. The expression of pERK was significantly increased in the RVLM in the control group following SNP infusion, and expression peaked 10 min after SNP infusion. The number of pERK positive neurons increased following SNP infusion in BL, SAD, and BL+SAD groups, although the increase was smaller than seen in the control group. The SAD group showed a relatively higher reduction in pERK expression when compared with the BL group. The level of glutamate release was significantly increased in the RVLM in control, BL, SAD groups following SNP infusion, and this peaked 10 min after SNP infusion. The SAD group showed a relatively higher reduction in glutamate release when compared with the BL group. These results suggest that the baroreceptors are more powerful in pERK expression and glutamate release in the RVLM following hypotension than the vestibular receptors, but the vestibular receptors still have an important role in the RVLM.

Inhibitory Modulation of 5-Hydroxytryptamine on Corticostriatal Synaptic Transmission in Rat Brain Slice

  • Choi, Se-Joon;Chung, Won-Soon;Kim, Ki-Jung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.295-301
    • /
    • 2003
  • Striatum plays a crucial role in the movement control and habitual learning. It receives an information from wide area of cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from raphe nuclei. In the present study, the effects of 5-HT to modulate synaptic transmission were studied in the rat corticostriatal brain slice using in vitro extracellular recording technique. Synaptic responses were evoked by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. 5-HT reversibly inhibited coticostriatal glutamatergic synaptic transmission in a dose-dependent fashion (5, 10, 50, and $10{\mu}M$), maximally reducing in the corticostriatal population spike (PS) amplitude to $40.1{\pm}5.0$% at a concentration of $50{\mu}M$ 5-HT. PSs mediated by non-NMDA glutamate receptors, which were isolated by bath application of the NMDA receptor antagonist, d,l-2-amino-5-phospohonovaleric acid (AP-V), were decreased by application of $50{\mu}M$ 5-HT. However, PSs mediated by NMDA receptors, that were activated by application of zero $Mg^{2+}$ aCSF, were not significantly affected by $50{\mu}M$ 5-HT. To test whether the corticostriatal synaptic inhibitions by 5-HT might involve a change in the probability of neurotransmitter release from presynaptic nerve terminals, we measured the paired-pulse ratio (PPR) evoked by 2 identical pulses (50 ms interpulse interval), and found that PPR was increased ($33.4{\pm}5.2$%) by 5-HT, reflecting decreased neurotransmitter releasing probability. These results suggest that 5-HT may decrease neurotransmitter release probability of glutamatergic corticostriatal synapse and may be able to selectively decrease non-NMDA glutamate receptor-mediated synaptic transmission.