• Title/Summary/Keyword: External stress

Search Result 1,069, Processing Time 0.033 seconds

Proposal on the Prediction Equation of Ultimate stress of External Tendon for the Prestressed Concrete Beams with External Tendons (외부 PSC 보에서 외부강선의 극한 응력 예측식 제안)

  • Yoo, Sung-Won;Ha, Heon-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.44-53
    • /
    • 2010
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. However, in the domestic and abroad code, the equation of ultimate stress of external tendon is not suggested yet, and the equation of ultimate stress of internal unbonded tendon is used instead of that of external tendon. Therefore, in this paper, after effective variables of ultimate stress of external tendon were analyzed, the analytical equation of ultimate stress of external tendon was proposed. And the reasonable coefficients were proposed by statistical work of test results of 25 beam with external tendon. Finally, the practical proposed equation of ultimate stress of external tendon was proposed with analytical and statistical model. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of external tendons in analysis and design.

A Study on the Stress Distribution of Steel Water Pipes(II) - Characteristics of Stress Distribution by External Forces and PWHT - (상수도용 도복장간관의 용접 및 외부하중에 의한 응력 특성에 관한 연구(II) - 복합외부하중 및 후열처리에 따른 용접부의 응력분포 특성 -)

  • 윤석환;이승기;나석주;고명환
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.292-297
    • /
    • 2001
  • One of the major characteristics that affects the life of welded steel water pipes is the stress distribution caused by welding and external forces. Some studios have bean carried out on the residual stress of steel water pipes. But the results on the stress distributions by welding and complex external forces are rare, because real water pipes operate under the ground and many kinds of external forces act simultaneously on the joints. To understand the complex stress distributions of welded joints, therefore predictions by numerical or analytic methods are required. In this study, temperature and stress distributions in steel water pipes produced by welding are predicted by a three-dimensional finite element method(FEM). Based on these results, stress distributions by welding and complex external forces are evaluated by adopting the same numerical method. The influence of some post weld heat treatments on residual stress distributions is also investigated.

  • PDF

Stress of External Steel Rod in Post-Tensioned Concrete Beam (포스트텐션 콘크리트 보에서 비부착 외부강봉의 응력)

  • Lee, Swoo-Heon;Kang, Thomas H.K.;Shin, Kyung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.47-55
    • /
    • 2015
  • This paper shows the simplified equation to predict the ultimate moment capacity and corresponding rod stress in reinforced concrete beam with external post-tensioning rods. Because the stress of external post-tensioning rod depends on the beam deflection, the previous analytical model for post-tensioned beams requires a tedious iteration process. Also, the stress equations in ACI code or other researchers' models are suitable only for internal tendons in concrete beams. In this study, given the lack of analytical approaches to predict the nominal stress of the external unbonded rod, a simple and robust equation has been proposed for externally post-tensioned concrete beams. It is concluded that the proposed equation predicted the stress of external steel rods in post-tensioned concrete beams reasonably well.

Behavior and stress check of concrete box girders strengthened by external prestressing

  • Zhang, Yu;Xu, Dong;Liu, Chao
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.133-142
    • /
    • 2018
  • The deterioration of existing bridges has become a major problem around the world. In the paper, a new model and an associated stress checking method are proposed for concrete box girders strengthened by external prestressing. The new model called the spatial grid model can analyze all the spatial behaviors clearly by transforming the box girder into discrete orthogonal grids which are equivalent to plate elements. Then the three-layer stresses are employed as the stress checking indices to evaluate the stress state of the plate elements. The initial stress check before strengthening reveals the cracked and potential cracking areas for existing bridges, making the strengthening design more targeted and scientific; the subsequent stress check after strengthening evaluates the strengthening effect and ensures safety. A deficient bridge is selected as the practical example, verifying the accuracy and applicability of the proposed model and stress checking method. The results show that principal stresses in the middle layer of plate elements reflect the main effects of external prestressing and thus are the key stress checking indices for strengthening. Moreover, principal stresses check should be conducted in all parts of the strengthened structure not only in the webs. As for the local effects of external prestressing especially in the areas near anchorage and deviator, normal stresses check in the outer and inner layers dominates and local strengthening measures should be taken if necessary.

Ultimate Stress of Prestressing Steel in Prestressed Concrete Beams Strengthened by External Prestressing (외부 프리스트레싱으로 보강된 프리스트레스트 콘크리트 보에서 프리스트레싱 강재의 극한응력)

  • Park Sang-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.677-686
    • /
    • 2004
  • This study deals with literature review, developing a predicting equation for the ultimate stress of internal and external prestressing steel, and an experimental test with the parameters affecting the ultimate stress of prestressing steel in prestressed concrete beams strengthened by external prestressing tendons. The proposed predicting equation takes rationally the effect of internal and external prestressing steels into consideration as a function of prestressing steel depth to neutral depth ratio. In the experimental study, prestressed concrete beams strengthened using external steel tendons are tested with the test parameters having a large effect on the ultimate stress of internal and external prestressing steel. The test parameters include internal and external prestressing steel reinforcement ratio and span to depth ratio. The test results are analyzed to confirm the rationality and applicability of the proposed equation for predicting the ultimate stress of internal and external prestressing steel. This research shows that the results obtained by the proposed equation for predicting the ultimate stress agreed very well with the test results.

An Improved Pipe Hoop Stress Formula

  • Lee, Jaeyoung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.76-82
    • /
    • 2001
  • The ASME B3l.4〔1〕and B3l.8 〔2〕codes use the thin wall formula to predict hoop stress in a pipe. To account for the external pressure, the above codes simply subtract the external pressure from the internal pressure. The thin wall formula using this differential pressure does not give the same hoop stress as the thick wall formula. This paper proposes an improved equation to predict pipe hoop stress subjected to both internal and external pressure. Compared to the conventional thin wall formula, the improved formula has additional terms, which improve the agreement with the thick wall formula and account for external pressure. The improved formula is less conservative than the conventional thin wall formula, but slightly more conservative than the thick wall formula. The formula is simpler and easier to use than the thick wall formula and will save pipe material cost as well as installation cost compared to using the conventional thin wall formula. The savings will increase as the water depth increases.

  • PDF

Effect of External Reinforcement on Stress/strain Characteristics of Critical Current in Ag Alloy Sheathed Bi-2212 Superconducting Tapes (Bi-2212 초전도 테이프에서 임계전류의 응력/변형률 특성에 미쳐는 외부강화의 영향)

  • ;K. Katagiri
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.6-10
    • /
    • 2001
  • Stress/stram dependencies of the critical current $I_c$ in AgMgNi sheathed multifilamentary Bi(2212) superconducting tapes were evaluated at 77K, 0T. The external reinforcement was accomplished by soldering Ag-Mg tapes to sin91e side or both sides of the sample. With the external reinforcement. the strength of tapes increased but $I_c$, decreased The $I_c$, degradation characteristic according to the external reinforcement was improved markedly in terms of the stress although it appeared less rectal.table on the basis of the strain. Effects of external reinforcement were discussed in a viewpoint of monitoring sensitivity of cracking in superconducting filaments by considering n-value representing the transport behavior of the current. It is closely associated with the location of them relative to the voltage-monitoring region in the tape.

  • PDF

Evaluation of Intraoperative Stress Radiologic Tests for Syndesmotic Injuries (수술 중 부하 영상을 이용한 원위 경비 관절 손상 진단 방법의 평가)

  • Bae, Su-Young;Chung, Hyung-Jin;Oh, Su-Chan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.15 no.1
    • /
    • pp.22-26
    • /
    • 2011
  • Purpose: To report the effectiveness of adding distal fibular external rotation stress test on the traditional lateral stress Cotton test in evaluating distal tibiofibular syndesmotic injuries. Materials and Methods: We evaluated syndesmotic injuries with intraoperative stress test during treating ankle fractures from March 2009 to September 2010. External rotation of distal fibula using small elevator was added on traditional stress test in case of suspicious syndesmotic injury. We retrospectively reviewed and compared the results of each test in 44 cases for which we tried both tests. Results: In 9 cases of positive traditional lateral stress tests, positive results were obtained in all cases by additional external rotation tests. In 21 cases of negative traditional stress tests, additional stress tests results were also negative. But there were 10 cases of positive additional tests and 4 of negative additional tests in equivocal results cases by the traditional stress tests. Conclusion: Using additional external rotation stress test in case of equivocal test result by the traditional lateral stress Cotton test for evaluation of syndesmotic injury during operation for ankle fracture can be a supplemental method to clarify syndesmotic injury needs fixation.

The Effect of Internal Restraint of Rebar in Shrinkage Stress Analysis of Concrete Slab in Multistory Building (고층건물 콘크리트 슬래브의 건조수축응력 해석에서 철근의 구속효과)

  • Kim Han-Soo;Kim Jae-Keun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.496-499
    • /
    • 2006
  • In this study, a practical method of shrinkage stress analysis on concrete slab in multi-story building is proposed, which considers both internal restraint and external restraint variation resulting from construction sequence. The shrinkage stress due to external restraint is obtained by multiplying relaxation coefficient to elastic shrinkage stress. The additional shrinkage stress due to internal restraint is obtained by residual strain of the elastic analysis. A verification example was analyzed and compared by the proposed method and commercial analysis program that is capable of time-dependent analysis of concrete. The results of 10-story example building show that the internal restraint of reinforcement increases the shrinkage stress considerably at the slabs under loose external restraint.

  • PDF

An Experiment of Flexural Behavior for the Prestressed Concrete Beams with Partially Bonded External Tendons (외부 부분 부착 PSC 보의 휨거동 실험)

  • Yoo, Sung-Won;Lee, Sang-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.141-147
    • /
    • 2012
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with external tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. The purposes of the present paper are therefore to improve the mechanical behavior of external unbonded tendon by using partially bonded external tendon and to evaluate the flexural behavior of partially bonded external tendon by the flexural member experiment. From the experimental results, before flexural cracking, there was no difference between external unbonded, partially bonded and bonded tendons. However, after cracking, yielding load of reinforcement, ultimate load, and tendon stress were increased in the sequence of external unbonded, partially bonded and bonded tendon members. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations. So the newly proposed equation will be needed including the consideration of tendon profile, tendon bonded type, and so on. The proposed partially bonded external tendon in this paper will be a effective basis for the evaluation of external tendons in construction and design.