• Title/Summary/Keyword: External insulation

Search Result 209, Processing Time 0.033 seconds

Effectiveness of a Heat Transfer Characteristics of an Auxiliary Chamber for Performance of an Air Spring (보조용기의 열전달특성이 공기스프링의 성능에 미치는 영향)

  • Jang, Ji-Seong
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • The air spring is used widely because of the easy change of spring constant, and, a superior vibration and shock insulation performance. Among the apparatus using the merits of that, the air spring connected an auxiliary chamber has been developed and used as a component of suspension system for an automobile and a railroad car. The purpose of this study is to suggest a design method reflecting heat transfer effect for an air spring system connected auxiliary chamber. In order to do so, this study investigates change of reaction force along with variations in heat transfer coefficient, and, analyzes an effectiveness of a heat transfer characteristics of an auxiliary chamber for external force attenuation characteristics and impedance characteristics of an air spring connected an auxiliary chamber.

Analysis of Photovoltaic module's Phenomena of aging with Acceleration Test (외부환경적 가속시혐에 의한 PV모듈의 열화성능 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1151-1152
    • /
    • 2006
  • In this paper, we examined 10 domestic samples of three different model using thermal, humidity freeze, thermal-endurance and damp heat test under IEC61215 photovoltaic module environmental endurance test condition. Three was almost no changes on power generation. Insulation resistance capacity was much higher than judgement standard but, showed unstable results depending on environmental test items. On external appearance test, there were two models which showed bubble, humidity penetration, seal melted frame phenomenon. From this results, the degree of aging under the external environment is a main cause that shortens photovoltaic module life time. So it is considered that the efforts for finding optimum condition of manufacturing process should be needed.

  • PDF

Reformation of Dielectric Property in interface between epoxy and Cu (Epoxy-Cu간 접촉면에서의 절연특성 개선)

  • 송재주;김성홍;정남성;황종선;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.9-12
    • /
    • 2000
  • Insulators for high-voltage and large-power should be endured mechanically the weight of mold bushing itself and the force of pushed from contact with circuit breaker and conductor. But dielectric breakdown could be occurred result from the external circumstances and internal factors such as chemical reaction, partial discharge, change of temperature and the relation of temperature-time in process of casting. Therefore, to get rid of external and internal factors of dielectric breakdown. Furthermore, to prevent the internal cracks, void, cavity which resulted from the contraction originated on the interface between copper and epoxy resin, formed semi-conductive layer with partially carbon painted on copper bar. The PD properties and the insulation qualities of epoxy molded insulators were improved by roles of cushions for the direction of diameter and natural sliding effects as like separated from conductor for the direction of length.

  • PDF

A Study on the Safety of Small LPG Storage Tanks at External Fires (외부화재시 LPG 소형저장탱크의 안전성에 관한 연구)

  • Yim, Ji-Pyo;Ma, Byung-Chol;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.64-72
    • /
    • 2015
  • The purpose of this study is to study the safety of a small LPG storage tank with a capacity less than 3 ton when it is exposed to an external fire. First, simulation studies were carried out using ASPEN Plus and PHAST to demonstrate that overpressurization in the tank can be relieved by discharging the LPG through an adequately sized safety valve, but the release may lead to the secondary risk of fire and explosion around the tank. Next, the temporal variations of the temperatures of the lading and tank wall were obtained using AFFTAC, which showed that the tank wall adjacent to the vapor space could be overheated in about 11 min to such a point that the weakened strength might cause a rupture of the tank and subsequent BLEVE. The consequences of the BLEVE were estimated using PHAST. Finally, several practical measures for preventing the hazards of overheating were suggested, including an anti-explosion device, sprinkling system, insulation, heat-proof coating, and enhanced safety factor for tank fabrication. The effectiveness of these measures were examined by simulations using AFFTAC and ASPEN Plus.

The Accident Hazard and Properties of the Leakage Current on the Electrical Insulation by Pollution (전기 절연물의 오염에 따른 누설전류 특성 및 사고위험성 연구)

  • Kim, Young-Seok;Shong, Kil-Mok;Jung, Jin-Su;Jung, Jong-Wook;Kim, Sun-Gu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.463-467
    • /
    • 2007
  • It is necessary to study the prevention and the management of electrical facilities because the electrical fault took place at the dust occurrence area due to environmental pollution. In particular, the dust accumulates easily on insulation material which is exposed an external long time. The leakage current brings out electrical fault after all. Also, it is need to variation of material and shape to repress a leakage current on electrical material. In this paper, we measured a leakage current on electrical material of facilities by dust, and in experiments the prevention to electrical fault was studied.

  • PDF

Development of an insulation performance measurement unit for full-scale LNG cargo containment system using heat flow meter method

  • Lee, Jin-sung;Kim, Kyung-su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.458-467
    • /
    • 2018
  • Efforts have been made in this paper to develop the measuring device for the insulation performance of full scale NO96 LNG CCS. The facility was designed to maintain environmental conditions which are similar to operation conditions of full scale LNG CCS. In the facility, the heat sink boundary was kept cryogenic temperature by cold chamber which contains liquefied nitrogen and heat source boundary was made by external case heated by natural convection. Heat Flow Meter method (HFM) was applied to this facility, hence Heat Flux Sensors (HFS) were attached to specimen. The equivalent thermal conductivity of full scale NO96 unit box was targeted to measure and PUF of same size was used for the calibration test. Additionally, the finite element analysis was carried out to check the performance of the developed test facility and experimental results were also compared with those predicted by the numerical method.

A Study on the Transient Measurement of the Effective Thermal Diffusivity of Insulation Materials by NPE Method (NPE법을 이용한 절연재료의 유효열확산계수의 과도측정에 관한 연구)

  • Lim, Dong Joo;Bae, Sin Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.243-255
    • /
    • 1990
  • The objective of this study is to present an efficient measurement method of the effective thermal diffusivity for the fibrous insulation material. The non-linear parameter estimation (NPE) method is adapted for this analysis because of its accuracy and its results are compared with those by other direct methods such as CTP, CHP and STD method. A experimental system is constructed with bell-jar vaccum chamber, diffusion pump, tube type furnace, control unit and data acquisition system included with A/D converter and IBM XT/AT personal computer. The typical results obtained from this study are as follows; 1) NPE method can be recommended as an useful and accurate method to measure the effective thermal diffusivity of insuation material because it is shown that the measurement error compared with those by other direct methods is reduced for standard material, NBS-1450b. 2) NPE method can minimize the effects of ill-measured temperature due to external disturbance, because the final value is found by point to point estimating. 3) NPE method dose not depend on the kinds of heat flux, since the surfac temperature are used to estimate the thermal diffusivity. 4) With NPE method, compared with the steady state method, a measuring time and a sample size could be reduced.

  • PDF

Characteristics of Temperature History at Each Section of Mat Foundation Concrete Applying Double Bubble Sheets (이중버블시트를 적용한 매트 기초콘크리트의 부위별 온도이력 특성)

  • Kim, Tae-Cheong;Kim, Jong;Jeon, Chung-Keun;Shin, Dong-An;Oh, Seon-Kyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.13-14
    • /
    • 2016
  • This study is aimed to analyze temperature history at each section of mat foundation concrete applying double bubble sheets. The results of the study are as follows. Firstly, the results of measuring the temperature history indicate that the lowest external temperature has been recorded at -5.6℃ for the three-day measurement period. For the central section, the result indicates that the lower, center and upper part have all secured the concrete curing temperature of 18℃ or higher. This results are believed to have resulted from excellent heat insulation performance of double bubble sheets. For the edge section between the edge form and the concrete interface, the temperature has been measured, on average, approximately 12℃ lower than the central section. However, all measured sections have indicated the temperature of 5℃ or higher. Meanwhile, an analysis has been conducted through the estimation equation of compressive strength of maturity during the curing period in order to examine the possibility of early frost damage and the aspect of securing strength. It has been confirmed that the compressive strength is higher than 50°D·D, namely, 5MPa, on the 3rd day of the aging process, which allows early frost damage to be avoided.

  • PDF

A Study on the Analysis of Fire Risk and Field Survey for FilottI Structures (필로티 구조물의 화재위험성 분석 및 현장조사에 관한 연구)

  • Han, Ji-Woo;Lee, Byeong-heun;Jin, Seung-Hyeon;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.45-46
    • /
    • 2018
  • The fire at the pilotis parking lot shows the fire propagation paths that are propagated to the ceiling materials and insulation materials and propagated through the external walls. In addition, there is a high risk of fire caused by vehicles with high combustion loads spreading throughout the parking lot. In particular, the omission of the ceiling materials at the parking lot in recent fire cases has contributed to the spread of the fire. In this study, the combustion performance of the ceiling materials between the insulation material and the vehicle is considered to prevent fire from spreading. Based on field research, the type of ceiling material used in the piloti structure showed that SMC ceiling materials have the highest percentage. Combustion performance test (KS F ISO 5660-1) was carried out on the SMC ceiling materials and the AL ceiling materials to review the fire safety of the ceiling finish based on the field investigation. The results of the test showed that the SMC ceiling materials has a THR 28.973[MJ/㎡] and peek HRR 273.93 [kW/㎡], while the AL ceiling material has a THR 0.584[MJ/㎡] and peek HRR 15.215[kW/㎡].

  • PDF

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.