• Title/Summary/Keyword: External conditions for design

Search Result 300, Processing Time 0.025 seconds

Dynamic Numerical Modeling of Subsea Railway Tunnel Based on Geotechnical Conditions and Seismic Waves (지반조건과 지진파를 고려한 해저철도 터널의 동적 수치 모델링)

  • Kwak, Chang-Won;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.69-86
    • /
    • 2022
  • The railway is widely used to transport passengers and freight due to its punctuality and large transport capacity. The recent remarkable development in construction technology enables various subsea railway tunnels for continent-continent or continent-island connectivity. In Korea, design and construction experience is primarily based on the successful completion of the Boryeong subsea tunnel (2021) and the Gadeok subsea tunnel (2010). However, frequent earthquakes with diverse magnitudes, globally induced and continuously increased the awareness of seismic risks and the frequency of domestic earthquakes. The effect of an earthquake on the subsea tunnel is very complicated. However, ground conditions and seismic waves are considered the main factors. This study simulated four ground types of 3-dimensional numerical models, such as soil, rock, composite, and fractured zone, to analyze the effect of ground type and seismic wave. A virtual subsea railway shield tunnel considering external water pressure was modeled. Further, three different seismic waves with long-term, short-term, and both periods were studied. The dynamic analyses by finite difference method were performed to investigate the displacement and stress characteristics. Consequently, the long-term period wave exhibited a predominant lateral displacement response in soil and the short-term period wave in rock. The artificial wave, which had both periodic characteristics, demonstrated predominant in the fractured zone. The effect of an earthquake is more noticeable in the stress of the tunnel segment than in displacement because of confining effect of ground and structural elements in the shield tunnel. 

The Analysis on the Determinants of Shipping Lines's entering the Arctic Sea Route (외항선사의 북극해항로 진출에 관한 결정요인 분석)

  • Son, Kyong-Ryong
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.4
    • /
    • pp.1-16
    • /
    • 2019
  • The purpose of this study is to Analyze the problems that container shipping companies exist through the commercialization of container shipping for Non-Arctic countries and the opportunity factors for the transport of the Arctic shipping to improve cooperation cross-border relation Arctic policy and the use of transport. In order to design a hierarchy analysis method study model, four high and 17 low factors were extracted by designing a hierarchy analysis method study model based on results by prior study and in-depth interview. The first of the higher factors is the internal strength of assessing the value of the Arctic, the will and capabilities of the shipping companies in creating new markets with the vision and goals of the shipping companies. Second, the internal constraints associated with the shipping companies advance to the NSR mean the negative factors for the entry into the NSR and the internal weaknesses that cause the shipping companies capacity limitations. Third, the economic benefits from the use of NSR are external factor for shipping companies in cooperation with the future economic value of the Arctic and with respect to Arctic sea and Arctic advance and development from Arctic coastal countries. Finally, external pre-emptive tasks means to respond to use NSR by external restrictions on transport to prepare the possibility of severe weather conditions, the customs policy change of coastal countries.

Influence and Application of an External Variable Magnetic Field on the Aqueous HCl Solution Behavior: Experimental Study and Modelling Using the Taguchi Method (염산 수용액 거동에 대한 가변 외부 자기장의 적용과 영향: 실험 연구 및 Taguchi 법을 이용한 모델링)

  • Hashemizadeh, Abbas;Ameri, Mohammad Javad;Aminshahidy, Babak;Gholizadeh, Mostafa
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.215-224
    • /
    • 2018
  • Influences of the magnetic field on 5, 10 and 15 wt% (1.5, 3 and 4.5 M) HCl solution behaviour, which has widespread applications in petroleum well acidizing, were investigated in various conditions. Differences in the pH of magnetized hydrochloric acid compared to that of normal hydrochloric acid were measured. Taguchi design of experimental (DoE) method were used to model effects of the magnetic field intensity, concentration, velocity and temperature of acid in addition to the elapsed time. The experimental results showed that the magnetic field decreases [$H^+$] concentration of hydrochloric acid up to 42% after magnetization. Increasing the magnetic field intensity (with 28% contribution), concentration (with 42% contribution), and velocity of acid increases the effect of magnetic treatment. The results also demonstrated that the acid magnetization was-not influenced by the fluid velocity and heating. It was also displayed that the acid preserves its magnetic memory during time. The optimum combination of factors with respect to the highest change of [$H^+$] concentration was obtained as an acid concentration of 10% and an applied magnetic field of 4,300 Gauss. Due to the reduction of HCl reaction rate under the magnetization process, it can be proposed that the magnetized HCl is a cost effective and reliable alternative retarder in the matrix acidizing of hydrocarbon (crude oil and natural gas) wells.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

Changes of abdominal muscle thickness during stable and unstable surface bridging exercise in young people

  • Kim, Tae Hoon;Hahn, Joohee;Jeong, Ju-Ri;Lee, Changjoo;Kim, You Jin;Choi, Sung Min;Jeon, Da Young;Lee, Jin Hwa;Lim, In-Hyuk;Lee, Wan-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.4
    • /
    • pp.210-214
    • /
    • 2016
  • Objective: The aim of this study was to measure the muscle architectural parameters of abdominal muscles in healthy individuals by rehabilitative ultrasound imaging (RUSI) and to investigate their changes after bridging exercise in various environments. Design: Cross-sectional study. Methods: The study included 40 healthy participants (19 men, 21 women). Subjects were randomly allocated to a stable surface group (SG, n=20) or an unstable surface group (UG, n=20). The participants assumed three positions in rest, bridging exercise with knee flexion $60^{\circ}$, and bridging exercise with knee flexion $90^{\circ}$ for the measurement of abdominal muscle thickness by RUSI. For the resting position, the participants held the head neutral in a hook-lying position and the dominant side was measured. For contraction, the participants performed the bridging exercise with the knee joint in $60^{\circ}$ and $90^{\circ}$ of flexion for 10 seconds each. Results: For transversus abdominis, external oblique muscle thickness, within the stable surface group and the unstable surface group, no significant contraction difference was observed in both the $60^{\circ}$ and $90^{\circ}$ bridge exercise conditions. Contraction difference of internal oblique muscle was significantly larger at $90^{\circ}$ than at $60^{\circ}$ within the SG (p<0.05). But within the UG, no significant contraction difference was shown. There was no significant contraction difference between the surface group and the unstable SG at $60^{\circ}$ condition and at $90^{\circ}$ condition in all measured muscles. Conclusions: The contraction difference is different for each muscle during bridge exercise with knee flexion $60^{\circ}$ and bridging exercise with knee flexion $90^{\circ}$. Muscle contraction difference is generally large when exercised on an unstable surface than a stable surface, but these are not statistically significant when bridging exercise is performed using dynamic air cushion for unstable surface.

Classification of cold regions and analysis of the freeze-thaw repetition cycle based on heat transfer quantity by freezing test (실내동결시험을 통한 열류량 분석에 따른 동결-융해 조건 분석 및 한랭지역의 분류)

  • An, Jai-Wook;Seo, Jeong-Eun;Jung, Min-Hyung;Seong, Joo-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.957-972
    • /
    • 2018
  • Tunnels constructed in cold regions can cause serious defects such as cracks and leaks due to external temperature changes in the portals and vents. In order to prevent the freezing damage of the tunnel, appropriate measures should be applied to the section where the freeze damage is concerned. However, the specific criteria and contents for judging whether or not the anti-freeze measures are applied are not presented. In this study, the laboratory freezing tests on the temperature changes of the concrete specimens under freezing conditions were carried out. And the freeze-thaw repetition cycle (F), which can judge the possibility of freezing damage, were presented based on the heat transfer quantity (W) by experimental results of case studies. Also, we propose a classification of cold regions considering the climatic characteristics of Korea for using it to efficient design and maintenance.

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.

Development of CFS Jacketing Retrofit Method for Rectangular High Strength Concrete Columns by Cross Sectional Shape Modification (4각형 고강도 콘크리트 기둥 단면 변형을 통한 CFS Jacketing 보강방법 개발)

  • Lee, Jong-Gil;Kim, Jang-Ho Jay;Park, Seok-Kyun;Kim, Jin-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.153-161
    • /
    • 2010
  • Numerous past studies have shown that safety and serviceability of many concrete infrastructures and buildings built in 1970's have far less strength capacities than their original intended design capacities, thereby requiring repair and strengthening. Currently, aged concrete structures are being repaired using various methods developed in the past. Unfortunately, these methods do not consider the specific conditions that these members are under, but they merely attach repairing materials on the external surface for random strength improvements. Therefore, in order to improve repair and strengthening methods by considering composite behavior between repairing material and structural member, enhanced construction methodologies are needed. Also, the enhanced repairing and strengthening methods must be able to be implemented on structural members constructed using high performance concrete to meet the present construction demand of building mammoth structures. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete (HSC) columns that can effectively improve column performance is developed. A square HSC column's cross-sectional shape is converted to an octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is surface wrapped using Carbon Fiber Sheets (CFS). The method allows maximum usage of confinement effect from externally jacketing CFS to improve strength and ductility of repaired HSC columns. The research results are discussed in detail.

Security Knowledge Classification Framework for Future Intelligent Environment (미래 융합보안 인력양성을 위한 보안교육과정 분류체계 설계)

  • Na, Onechul;Lee, Hyojik;Sung, Soyung;Chang, Hangbae
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.3
    • /
    • pp.47-58
    • /
    • 2015
  • Recently, new information security vulnerabilities have proliferated with the convergence of information security environments and information and communication technology. Accordingly, new types of cybercrime are on the rise, and security breaches and other security-related incidents are increasing rapidly because of security problems like external cyberattacks, leakage by insiders, etc. These threats will continue to multiply as industry and technology converge. Thus, the main purpose of this paper is to design and present security subjects in order to train professional security management talent who can deal with the enhanced threat to information. To achieve this, the study first set key information security topics for business settings on the basis of an analysis of preceding studies and the results of a meeting of an expert committee. The information security curriculum taxonomy is developed with reference to an information security job taxonomy for domestic conditions in South Korea. The results of this study are expected to help train skilled security talent who can address new security threats in the future environment of industrial convergence.

Development of Noise and AI-based Pavement Condition Rating Evaluation System (소음도·인공지능 기반 포장상태등급 평가시스템 개발)

  • Han, Dae-Seok;Kim, Young-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This study developed low-cost and high-efficiency pavement condition monitoring technology to produce the key information required for pavement management. A noise and artificial intelligence-based monitoring system was devised to compensate for the shortcomings of existing high-end equipment that relies on visual information and high-end sensors. From idea establishment to system development, functional definition, information flow, architecture design, and finally, on-site field evaluations were carried out. As a result, confidence in the high level of artificial intelligence evaluation was secured. In addition, hardware and software elements and well-organized guidelines on system utilization were developed. The on-site evaluation process confirmed that non-experts could easily and quickly investigate and visualized the data. The evaluation results could support the management works of road managers. Furthermore, it could improve the completeness of the technologies, such as prior discriminating techniques for external conditions that are not considered in AI learning, system simplification, and variable speed response techniques. This paper presents a new paradigm for pavement monitoring technology that has lasted since the 1960s.