• Title/Summary/Keyword: External Wind

Search Result 526, Processing Time 0.028 seconds

Wind-Induced Vibration Control of a Tall Building Using Magneto-Rheological Dampers: A Feasibility Study

  • Gu, Ja-In;Kim, Saang-Bum;Yun, Chung-Bang;Kim, Yun-Seok
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • A recently developed semi-active control system employing magneto-rheological (MR) fluid dampers is applied to vibration control of a wind excited tall building. The semi-active control system with MR fluid dampers appears to have the reliability of passive control devices and the adaptability of fully active control systems. The system requires only small power source, which is critical during severe events, when the main power source may fail. Numerical simulation studies are performed to demonstrate the efficiency of the MR dampers on the third ASCE benchmark problem. Multiple MR dampers are assumed to be installed in the 76-story building. Genetic algorithm is applied to determine the optimal locations and capacities of the MR dampers. Clipped optimal controller is designed to control the MR dampers based on the acceleration feedback. To verify the robustness with respect to the variation of the external wind force, several cases with different wind forces are considered in the numerical simulation. Simulation results show that the semi-actively controlled MR dampers can effectively reduce both the peak and RMS responses the tall building under various wind force conditions. The control performance of the MR dampers for wind is found to be fairly similar to the performance of an active tuned mass damper.

  • PDF

Predicting the lateral displacement of tall buildings using an LSTM-based deep learning approach

  • Bubryur Kim;K.R. Sri Preethaa;Zengshun Chen;Yuvaraj Natarajan;Gitanjali Wadhwa;Hong Min Lee
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.379-392
    • /
    • 2023
  • Structural health monitoring is used to ensure the well-being of civil structures by detecting damage and estimating deterioration. Wind flow applies external loads to high-rise buildings, with the horizontal force component of the wind causing structural displacements in high-rise buildings. This study proposes a deep learning-based predictive model for measuring lateral displacement response in high-rise buildings. The proposed long short-term memory model functions as a sequence generator to generate displacements on building floors depending on the displacement statistics collected on the top floor. The model was trained with wind-induced displacement data for the top floor of a high-rise building as input. The outcomes demonstrate that the model can forecast wind-induced displacement on the remaining floors of a building. Further, displacement was predicted for each floor of the high-rise buildings at wind flow angles of 0° and 45°. The proposed model accurately predicted a high-rise building model's story drift and lateral displacement. The outcomes of this proposed work are anticipated to serve as a guide for assessing the overall lateral displacement of high-rise buildings.

Effect of building proximity on external and internal pressures under tornado-like flow

  • Sabareesh, G.R.;Cao, Shuyang;Wang, Jin;Matsui, Masahiro;Tamura, Yukio
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.163-177
    • /
    • 2018
  • Tornadoes are one of the world's deadliest natural phenomena. They are characterized by short life span and danger. It has been observed through post-damage surveys that localities with large numbers of buildings suffer major damage during a tornado attack resulting in huge loss of life and property. Thus,it is important to study interfering buildings exposed to tornado-like vortices. The present study focuses on external and internal pressures developed on building models exposed to translating tornado-like vortices in the presence of an interfering building model. The effects of translating speed and swirl ratio of a tornado-like vortex on external and internal pressures for a principal building in the vicinity of an interfering building are investigated. Results indicate that external and internal pressures are enhanced or reduced depending on the location of the interfering building with respect to the principal building.

Investigation on Severe Aerodynamic Load Condition about Pantograph (판토그래프 가혹공력하중에 대한 연구)

  • Hwang, Jae-Ho;Lee, Dong-Ho;Chung, Kyung-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.361-366
    • /
    • 2001
  • The present study describes a practical estimation procedure about the pantograph under several severe aerodynamic load conditions. As the operating speed of the Korean Train Express(KTX) reaches 350km/h, structural safety at various conditions should be examined at the design stage. In the present study, a compact and reliable procedure is developed to get aerodynamic loads on each part of the pantograph regarding the typhoon condition, the train/tunnel interaction, the train/train interaction and the side wind condition. In the estimation procedure, 3-dimensional steady and unsteady CFD simulation around the high speed train facilitates assigning the external local flow condition around the pantograph. The procedure is verified using the results of the low speed wind tunnel test at JARI and applied to 7 flow conditions and 4 operation configurations.

  • PDF

Structural Dsign of FRP Wind Turbine Blade (섬유강화 복합재료 풍차날개의 구조설계)

  • 강수춘;김동민;전완주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.162-174
    • /
    • 1992
  • Blades are one of the critical parts of the wind machine. This paper presents a design procedure for the blade of a 7m diameter horizontal axis wind turbine with the constraint conditions of stresses and fundamental frequency. This blade consists of glass/polyester woven fabric and unidirectional prepreg. It was firstly designed by the classical beam theory on the assumption that torque box sustains all external loads and the reliability of the blade was then inspected in the preliminary estimation by using FEM.

A Study on the Estimation of Wind Forces Influence upon the Turning Ability of a Car Carrier Ship (자동차운반선의 선회성능에 미치는 풍하중의 영향에 관한 연구)

  • 최명식;이경우;오양국
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.5
    • /
    • pp.397-403
    • /
    • 2000
  • Since very large and high-speed ships have been appeared in marine transportation from 1970s, these ships with poor maneuverability have made large-scale accidents frequently all over the world. The IMO(International Maritime Organization) recommended that ship designers should evaluate various maneuvering performance at initial stage and serve them to ship operators when they deliver a new ship. Meantime, it is expected that ships with large and wide superstructure would have poor maneuverability when they are affected by strong wind. Therefore, car carrier ship with large superstructure was selected to confirm how the ship responds to the external wind forces in this paper. The lateral and transverse projected areas above the water level were considered and ship behaviors were checked by change of rudder angles under severe wind conditions of different directions. In addition, hydrodynamic derivatives and coefficients were predicted from ship particulars and numerical calculations were carried out with the mathematical model of low speed maneuvering motions.

  • PDF

Characteristics of wind loads on roof cladding and fixings

  • Ginger, J.D.
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.73-84
    • /
    • 2001
  • Analysis of pressures measured on the roof of the full-scale Texas Tech building and a 1/50 scale model of a typical house showed that the pressure fluctuations on cladding fastener and cladding-truss connection tributary areas have similar characteristics. The probability density functions of pressure fluctuations on these areas are negatively skewed from Gaussian, with pressure peak factors less than -5.5. The fluctuating pressure energy is mostly contained at full-scale frequencies of up to about 0.6 Hz. Pressure coefficients, $C_p$ and local pressure factors, $K_l$ given in the Australian wind load standard AS1170.2 are generally satisfactory, except for some small cladding fastener tributary areas near the edges.

A Numerical Analysis for Light Weight and Strength Improvement of Wind Power System Nacelle Cover (풍력발전기용 나셀외장부의 경량화 및 강도향상에 관한 수치해석)

  • Kang, Ji-Woong;Kwon, Oh-Heon;Jeong, Woo-Yul
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • Wind power system is composed by 3 major parts, rotor blade, nacelle and tower. Especially, the nacelle cover has an important role to prevent the component of nacelle and rotor from an extreme external circumstance. Therefore it is necessary to analyze and evaluate the stress distribution and deformation for them in the design level. There are two major points in nacelle cover analysis. The one is nacelle cover itself and the other is cover support structure. According to GL specification, this study shows the result that CFRP nacelle cover of wind turbine satisfies the strength and deformation through numerical analysis using the commercial finite element analysis program.

Study on the Transient Phenomenon Simulation of Wind Power Generation System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전시스템의 과도현상 시뮬레이션에 관한 연구)

  • Han, Sang-Geun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.309-312
    • /
    • 2002
  • For the purpose of more effective simulation of the utility interactive WPGS(Wind Power Generation System) the SWRW (Simulation method for WPGS using Real Weather condition) is used in this paper, in which those of three topics for the WPGS simulation. user-friendly method, applicability to grid-connection and the utilization of the real weather conditions, are satisfied. The simulation of the WPGS using the real weather condition including components modeling of wind turbine system is achieved by introducing the interface method of a non-linear external parameter and FORTRAN using PSCAD/EMTDC. The simulations of steady-state and transient-state are performed effectively by the introduced simulation method. The generator output and current supplied into utility can be obtained by the steady-state simulation, and THD can be achieved by analyzing the results as well. The transient - state of the WPGS can be analyzed by the simulation results of over cut-out wind speed.

  • PDF

A Study on the Deck Wetness of the FPSO (원유 생산.저장.하역선의 갑판침수에 관한 연구)

  • 임춘규;이호영
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.8-14
    • /
    • 2004
  • As the number of offshore structure is glowing in deep waters, there have been increased damages of it. These floating structures in offshore locations exposed to harsh environmental conditions. In recent years, there has been a slowing attention around damages on bow and deck on FPSO caused by waves in steep storm condition. This paper describes a study of the water on deck due to the dynamic behavior of a FPSO with turret mooring system. The nonlinear motions of the FPSO are simulated under external forces due to wave, current, wind, and mooring forces in the time domain. The direct integration method is employed to estimate low frequency drift wave forces. The current forces are calculated by using slow motion maneuvering equations in the horizontal plane. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A.