• Title/Summary/Keyword: External Prestressing Strengthening Method

Search Result 34, Processing Time 0.02 seconds

Behavior of Wedge-Type Anchor System for External Prestressing Method with CFRP (외부 긴장 보강을 위한 탄소섬유 복합재료용 쐐기형 정착구 거동)

  • Shin Jae-Min;Jung Dae-Sung;Jung Woo-Tae;Park Jong-Sup;Park Young-Hwan;Kim Chul-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.477-480
    • /
    • 2004
  • This paper present test result to develop wedge-type anchor system for external prestressing method with CFRP. The test results indicated that the lower a slope angle and elastic of wedge are, the higher ultimate strengths are for plate types. Bar types showed premature failure because of local high stress in FRP of anchor system. Therefore, to improve the strength for bar types needs further work of strengthening sleeves, slope angles of wedge and materials.

  • PDF

An Experimental Study on the Net Type Prestress Strengthening Method for Slab Bridges (네트형 슬래브교 외부강선 보강공법의 실험적 연구)

  • 한만엽;황태정
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.363-366
    • /
    • 2003
  • This study is to develop a strengthening method for RC slab bridges and rigid-frame bridges with external prestressing. In this study, we design the slab specimen that have a strengthening of the DB-13 and set up the longitudinal tendons placed on both side of slab strengthens the whole bridge, and lateral tendons placed under the slab strengthens the middle of slab, and conveys the load at middle slab to both sides. Structural analysis for the tensile force for strengthening were analysed and we know that displacement and strain was improved from this test. This method has no upward roof work, so it is very convenient for installing. And no spaces under the slab are need, so it is good for shallow slabs which has less space inder the slab.

  • PDF

Fiber method analysis of rc beam retrofitted with turnbuckle external post-tensioning

  • Lejano, Bernardo A.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.67-86
    • /
    • 2016
  • Strengthening as well as correcting unsightly deflections of reinforced concrete (RC) beam may be accomplished by retrofitting. An innovative way to do this retrofitting that is proposed in this study utilizes turnbuckle to apply external post-tensioning. This Turnbuckle External Post-Tensioning (T-EPT) was experimentally proven to improve the serviceability and load carrying capacity of reinforced concrete beams. The T-EPT system comprises a braced steel frame and a turnbuckle mechanism to provide the prestressing force. To further develop the T-EPT, this research aims to develop a numerical scheme to analyze the structural performance of reinforced concrete beams with this kind of retrofitting. The fiber method analysis was used as the numerical scheme. The fiber method is a simplified finite element method that is used in this study to predict the elastic and inelastic behavior of a reinforced concrete beam. With this, parametric study was conducted so that the effective setup of doing the T-EPT retrofitting may be determined. Different T-EPT configurations were investigated and their effectiveness evaluated. Overall, the T-EPT was effective in improving the serviceability condition and load carrying capacity of reinforced concrete beam.

Experimental Study on the Strengthening Effect of External Prestressing Method Considering Deterioration (구조물 노후도를 반영한 외부긴장 보강 효과에 관한 실험적 연구)

  • Kim, Sang-Hyun;Jung, Woo-Tai;Kang, Jae-Yoon;Park, Hee-Beom;Park, Jong-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Concrete structures gradually age due to deterioration of materials or excess loads and environmental factors, and their performance decreases, affecting the usability and safety of structures. Although external tension construction methods are widely used among the reinforcement methods of old bridges, it is insufficient to identify the effects and effects of reinforcement depending on the level of aging. Therefore, in this study, a four-point loading experiment was conducted on the subject with the non-reinforced and external tensioning method to confirm the reinforcement effect of the external tensioning method, assuming the aging of the structure as a reduction in the compressive strength and tensile reinforcement of concrete, to analyze the behavior of the reinforcement and confirm the reinforcement effect. As a result of the experiment, it was difficult to identify the amount of reinforcement in the extreme condition due to early elimination of the anchorage. Therefore, compliance with the regulations on anchor bolts is required when applying the external tension reinforcement method. Crack load and yield load increased depending on whether external tension was reinforced, but before the crack, the stiffness before and after reinforcement was similar, making it difficult to confirm the reinforcement effect.

A study on Development of Methods to Rehabilitate the Damaged Prestressed Concrete beam Using Glass Fiber (유리섬유를 이용한 손상된 프리스트레스트 콘크리트 보의 보강공법 개발연구)

  • Kang, Won-Ho;Han, Man-Yop;Lee, Taek-Sung;Rhu, Young-Min
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.167-175
    • /
    • 1999
  • Many composite girder bridges have been constructed for about thirty five years. Nowadays they are aged or deteriorated because of the increase in traffic and vehicle loads. In this study, the effect of strengthening with glass fiber sheet is investigated to estimate the possibility for applying to damaged prestressed concrete bridges. One normal and eight cracked specimens which had been preloaded were tested. The cracked specimens were strengthened with either external prestressing or bonding glass fiber sheet, or using both methods. The results showed that the maximum loads are almost same for both methods. So it seems that the strengthening with glass fiber sheet can be used for strengthening damaged prestressed concrete girders. It is important that proper devices should be selected to prevent glass fiber sheet from premature bonding failure below its maximum load, which is similar to end anchorage problem in external prestressing method. It is proved that the devices proposed in this paper have sufficient anchoring capability to increase load carrying capacity.

An Experimental Study About a Net-Type External Prestress Strengthening Method for Slab Bridges (네트형 외부 긴장재에 의한 슬래브교 보강 실험)

  • Han, Man Yop;Kang, Tae Heon;Choi, Sok Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.136-149
    • /
    • 2011
  • Large portion of the domestic bridges are slab bridges reflecting the geographical characteristic of the country, where exists lots of inclines and small winding brooks. Many of the slab bridges are damaged and superannuated as they become obsolete. Deterioration is accelerated when the traffic density becomes large and heavy vehicles pass frequently. A strengthening method for deteriorated slab bridges was studied in this work. The examined net-type strengthening method uses both longitudinal and transverse prestressing for strengthening. In this way, the deflection at the center of the slab can be better controlled, and consequently, the slab is more efficiently strengthened. Three slab specimens were fabricated for the experimental test and subjected to three different loading conditions, and the load bearing capacities and deflections of slabs were examined. Flexural stiffness of slabs increased by 30.7~107.3%, and deflection of slabs decreased by 27.6~52.2% after net-type strengthening. The net-type prestressing is efficient to the strengthening for the center of a slab, and its efficiency is also valid under eccentric loadings. Since extra prestress forces can be added in the future, if necessary, the net-type strengthening system is advantagous for the maintenance and repair of slab bridges.

A Study on Strengthening of Reinforced Concrete Pier Caps Using Prestressed Near Surface Mounted CFRP (프리스트레스가 도입된 표면매립 CFRP를 이용한 교각 두부 보강에 관한 연구)

  • Hong, Sung-Nam;Kim, Tae-Wan;Park, Sun-Kyu;Park, Jong-Sup;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.595-602
    • /
    • 2007
  • Recently, concrete structures with carbon fiber reinforced polymer (CFRP) reinforcements have been commonly used for the bridge and building construction. In this paper, pier caps were strengthened by prestressed near surface mounted CFRP. To verify the effectiveness of the strengthening method, 7 pier cap specimens were fabricated. One specimen was designed for control, two for external prestressing steel strands, two for CFRP plates, and two for CFRP bars. Experimental variables consist of type of reinforcement materials and prestressing levels. The results of laboratory have shown that the ultimate load capacities of prestressed near surface mounted CFRP specimens were about $20{\sim}33%$ greater than that of a control specimen. Also, ultimate load capacities of prestressed near surface mounted CFRP specimens were similar to those of external prestressing specimens with steel strands.

A Study on the Reinforcement of Steel Composite Beam Using the External Post-Tensioning Method (외부 후 긴장 공법을 이용한 강합성보의 보강에 관한 연구)

  • Park, Yong-Gul;Park, Young-Hoon;Lee, Seung-Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.549-558
    • /
    • 2000
  • In strengthening structure, the external post-tensioning method which secure clearness in the structure analysis process is adopted to bridges as well as architecture structure. In this study, to investigate the behavior of composite beam in the process of post-tensioning, the amount of prestress force loss, the amount of prestressed compression stress at the lower flange and the behavior of lower flange connected with anchorage are analyzed by comparing the results of finite element analysis with the measured results of installed strain gauges. After finishing the post-tensioning, the strengthening effect of external post-tensioning method is analyzed by static loading test. It is also investigated that the strengthening effect of shear section in the harped external post-tensioning specimens.

  • PDF

Strengthening of Concrete Structures with External Post-Tensioning and CFRP Strips (외부 프리스트레싱과 탄소섬유판을 결합한 콘크리트 구조물 보강)

  • Lim, Dong-Hwan;Park, Sung-Hwan;Kim, Yong-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.165-168
    • /
    • 2006
  • Carbon fiber reinforced polymer(CFRP) have superior mechanical and chemical properties in comparison with conventional materials. And post-tensioning method has been used for structural reinforcement of RC structures due to easy installation and good effect of resisting capacity of structures. But the higher cost of CFRP and the loss of prestressing force with time are considered the major problems to use it. In this study, CFRP Strips and external post tensioning for rehabilitation of old concrete structures were adapted and optimal combination of these methods is considered. A total of 17 concrete members were made and tested. The types and numbers of CFRP strips and post-tensioning types were selected as major test variables. From test results, it is shown that the concrete members that post tensioned and bonded CFRP strips has a pronounced effect on the strength and deformational behavior. This present study indicates that external temporally post tensioning can reduce the amount of CFRP strips required and the combination of temporally post tensioning and CFRP strips may meet the strength and ductility requirements of old structures.

  • PDF

Experimental Study on Flexural Behavior of PSC I Girder and the Effect of External Prestressing (PSC I합성 거더의 휨 거동 및 외부 강선 보강효과에 관한 실험 연구)

  • Lee, Byeong-Ju;Park, Jae-Guen;Kim, Moon-Young;Shin, Hyun-Mock;Park, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.755-762
    • /
    • 2007
  • For the evaluation of the load carrying capacity of the deteriorated PSC I girder bridge in service load state and the verification of the grade to the reinforcement effect of actual bridge strengthened by external prestressing tendons, the field test using vehicles is applied widely. Because this teat was executed in elastic range, the investigation of the characteristics of behavior caused by live load is only available. And it is impossible to estimate load carrying capacity in limit state and nonlinear behavior after that a crack is appeared. In this study, the 27-year-old prestressed concrete girder bridge is used and various load tests are performed, so we evaluate the behavior characteristics of the bridge in service load state and ultimate load state, and estimate the load carrying capacity of bridge. In addition, the artificial damages are induced from cutting internal tendons, and external tendons is added to strengthen it as much as vanished internal tendons. Next we compare the damage state with the strengthening state. In case of the application of external prestressing method to PSC I girder bridge, the present experiment result may decide more exactly the load carrying capacity of actual bridge, the amount for reinforcement, and the standard of quality control etc. at reinforcement work.