• 제목/요약/키워드: Exterior Shading Device

검색결과 6건 처리시간 0.024초

공공청사 리트로핏 설계 시 외부 수평 차양 장치에 따른 에너지 소비량 절감 방안 (The Reduction of Energy Consumption by the Exterior Horizontal Shading Device during Design for the Retrofit of Public Buildings)

  • 어진선;장지훈;이승복;김병선
    • KIEAE Journal
    • /
    • 제17권2호
    • /
    • pp.29-34
    • /
    • 2017
  • Purpose: Recently, significant heat loss through the window takes place in buildings. Nevertheless, there exists little literature concerning the exterior horizontal shading devices and the design criteria are not clearly settled yet. Applying the exterior horizontal shading devices is more efficient as compared to the interior shading devices in that solar radiation can be directly blocked before passing through the window or the envelope. The purpose of this study is to reduce the internal load by designing the exterior horizontal shading devices and verify the degree of reduction in energy consumption. Method: This study aims to reduce energy consumption in cooling and heating through proposing proper length and shape of the exterior horizontal shading devices in public buildings. In the process, actual energy data and the Design Builder simulation program are utilized. In addition, economic aspect is considered to figure out the optimal length of the exterior horizontal shading devices that maximizes efficiency. Result: As a result, the proper length and shape of the exterior horizontal shading devices are provided as follows: 1) Energy consumption in cooling and heating is minimized when the exterior horizontal shading devices are designed as 0.5m*2. 2) Electricity bill is the lowest when the exterior horizontal shading devices are designed as 3.3m*2. The gap between maximum and minimum electricity bill is about 7.8~14%.

동계에 차양 적용에 의한 실내 환경 측면의 효과에 관한 실험적 연구 (An Experimental Study on the Effect on Indoor Environment by the Application of the Shading Device in Winter)

  • 백주영;김지현;여명석;김광우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.854-859
    • /
    • 2006
  • This study aims to evaluate the effect on indoor environment by the application of the shading device on winter season. Therefore, thermal and visual experiments were conducted at two side-by-side mock-Lip test cells which were equipped with the shading device(venetian blind & roll blind) at interior and exterior side of the window. The results of this study are as follows: 1) At night of winter, the shading device can prevent internal heat from going out. 2) Exterior shading device is more effective in winter as well as in summer. 3) At daytime of winter, the shading device can provide the uniformity of illuminance, and the interior shading device is more effective.

  • PDF

접이식 차양장치에 관한 이론적 연구 (A Theoretical Study on a Folding Shading Device)

  • 백상훈;최원기;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제29권3호
    • /
    • pp.28-36
    • /
    • 2009
  • The majority of fixed shading devices are installed in the exterior of a building in order to dissipate the heat absorbing from the sun and to prevent the direct sunlight. In designing external shading devices for windows, many requirements must be considered simultaneously; solar geometry, optimum energy performance, multi-purpose usage and design factors etc.. In order Lo satisfy these requirements, we suggests the folding shading device and its optimum design methodology. Also we analyzed the thermal performance using the IES_VE program according to various operating modes and compared with existing shading devices. The results show that proposed device reduce about $1.90{\sim}22.40%$ in cooling load and about $1.09{\sim}24.22%$ in heating load in comparison with existing ones.

블라인드형 외부차양의 종류 및 반사율에 따른 건물에너지 저감효과 분석 (An Analysis on Building Energy Reduction Effect of Exterior Venetian Blind According to Orientation and Reflectance of Slat)

  • 김진아;윤성환
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.28-34
    • /
    • 2013
  • It is essential to reduce building energy consumption in office building because government enact policy which encourages building energy certification from 2013. Office building has high cooling energy demand due to large glazed area of facade in these days. Shading devices can be an alternative of reducing high cooling energy demand. So, this study simulated a variety of exterior venetian blinds to know how much building energy be affected by orientation and reflectance of slat. The results of this study are based on Seoul weather data. The following is a summary of this study. 1) As a slat of venetian blinds has the lower reflectance, the more building energy reduced. Reflectance is usually affected by color and material of slat. In case reflectance is 0.2 reduce 4% of building energy than reflectance is 0.8. 2) Horizontal exterior venetian blinds are more effective than vertical exterior venetian blinds in all of orientation. Horizontal shape is average 16% more effective in shading effect than vertical shape. 3) In this case study, the most effective shading device is low reflectance horizontal exterior venetian blinds that result about 18% building energy reduction than no shade model. The results of this research can be used to plan shading devices for energy conservative office building.

Analysis of energy and daylight performance of adjustable shading devices in region with hot summer and cold winter

  • Freewan, Ahmed A.;Shqra, Lina W.
    • Advances in Energy Research
    • /
    • 제5권4호
    • /
    • pp.289-304
    • /
    • 2017
  • Large glazed surfaces and windows become common features in modern buildings. The spread of these features was influenced by the dependence of designers on mechanical and artificial systems to provide occupants with thermal and visual comfort. Countries with hot summer and cold winter conditions, like Jordan, require maximum shading from solar radiation in summer, and maximum exposure in winter to reduce cooling and heating loads respectively. The current research aims at designing optimized double-positioned external shading device systems that help to reduce energy consumption in buildings and provide thermal and visual comfort during both hot and cold seasons. Using energy plus, a whole building energy simulation program, and radiance, Lighting Simulation Tool, with DesignBuilder interface, a series of computer simulations for energy consumption and daylighting performance were conducted for offices with south, east, or west windows. The research was based on comparison to determine the best fit characteristics for two positions of adjustable horizontal louvers on south facade or vertical fins on east and west facades for summer and winter conditions. The adjustable shading systems can be applied for new or retrofitted office or housing buildings. The optimized shading devices for summer and winter positions helped to reduce the net annual energy consumption compared to a base case space with no shading device or with curtains and compared to fix shading devices.

베네시안 블라인드가 적용된 오피스 건물의 외피 투과체 계획을 위한 열·빛 환경 평가에 대한 연구 (Evaluation of Thermal and Visual Environment for the Glazing and Shading Device in an Office Building with Installed of Venetian Blind)

  • 김철호;김강수
    • KIEAE Journal
    • /
    • 제15권6호
    • /
    • pp.101-109
    • /
    • 2015
  • Purpose: Glazing and shading devices influence a lot on the thermal and visual environment in office buildings. Solar heat and daylight are contrary concept, therefore proper arrangement of thermal and optical performance is needed when designing a glazing and shading devices. The purpose of this study is to examine the conditions of the glazing and shading devices available for promoting the reduction of cooling loads + lighting loads and the improvement in thermal comfort and visual comfort for the summer season in an office building installed with venetian blind. Method: This study established 12 simulation cases which have different glazings and the positions of venetian blind for evaluating different thermal and optical performance. And by using EnergyPlus v8.1 and Window v7.2 program, we quantitatively analyzed cooling loads + lighting loads, thermal comfort and visual comfort in an office building installed with the glazing and shading devices. Result: Consequently, Case 9(Double Low-E+Exterior Blind) is the best arrangement of solar heat gain and daylight influx, thereby becomes the most excellent case of reducing cooling+lighting loads(46.8%) and simultaneously becomes the enhancement case in thermal comfort. Also, DGI(Daylight glare index) under clear sky conditions in summer was evaluated to be 19.6, and thereby satisfied the recommendation level of allowing visual comfort.