• 제목/요약/키워드: Extensive Creep

검색결과 11건 처리시간 0.02초

산소 농도에 따른 Alloy 617의 고온헬륨환경에서의 크립 및 산화거동 (Creep and Oxidation Behaviors of Alloy 617 in High Temperature Helium Environments with Various Oxygen Concentrations)

  • 구자현;김대종;장창희
    • 한국압력기기공학회 논문집
    • /
    • 제7권2호
    • /
    • pp.34-41
    • /
    • 2011
  • Wrought nickel-base superalloys are being considered as the structural materials in very-high temperature gas-cooled reactors. To understand the effects of impurities, especially oxygen, in helium coolant on the mechanical properties of Alloy 617, creep tests were performed in high temperature flowing He environments with varying $O_2$ contents at 800, 900, and $1000^{\circ}C$. Also, creep life in static He was measured to simulate the pseudo-inert environment. Creep life was the longest in static He, while the shortest in flowing helium. In static He, impurities like $O_2$ and moisture were quickly consumed by oxidation in the early stage of creep test, which prevented further oxidation during creep test. Without oxidation, microstructural change detrimental to creep such as decarburization and internal oxidation were prevented, which resulted in longer creep life. On the other hand, in flowing He environment, surface oxides were not stable enough to act as diffusion barriers for oxidation. Therefore, extensive decarburization and internal oxidation under tensile load contributed to premature failure resulting in short creep life. Limited test in flowing He+200ppm $O_2$ resulted in even shorter creep life. The oxidation samples showed extensive spallation which resulted in severe decarburization and internal oxidation in those environments. Further test and analysis are underway to clarify the relationship between oxidation and creep resistance.

Sp-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(ll) - 보일러 헤더 - (Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (ll) - Boiler Header -)

  • 백승세;이동환;하정수;유효선
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.55-60
    • /
    • 2002
  • For the development of a new creep test technique, the availability of SP-Creep test is discussed for 1Cr-0.5Mo boiler header material. And some results are also compared with those of 2.25Cr- 1Mo steel which widely uses as boiler superheater tube. The results can be summarized as follows. The load exponents(n) obtained by SP-Creep test for 1Cr-0.5Mo steel are decreased with increasing creep temperature and the values are 15.67, 13.89, and 17.13 at 550$^{circ}C$ ,575$^{circ}C$ and 600$^{circ}C$, respectively. The temperature dependence of the load exponent is given by n = 107.19 - 0.1108T. This reason that load exponents show the extensive range of 10∼16 is attributed to the fine carbide such as M$_{23}$C$_{6}$ in lath tempered martensitic structures. At the same creep condition, the secondary creep rate of 1Cr-0.5Mo steel is lower than the 2.25Cr-1Mo steel1 due to the strengthening microstructure composed by normalizing and tempering treatments. Through a SEM observation, it can be summarized that the primary, secondary, and tertiary creep regions of SP-Creep specimen are corresponding to plastic bending, plastic membrane stretching, and plastic instability regions among the deformation behavior of four steps in SP test, respectively.y.

Crack-tip constraint analysis of two collinear cracks under creep condition

  • Jiao, Guang-Chen;Wang, Wei-Zhe;Jiang, Pu-Ning
    • Structural Engineering and Mechanics
    • /
    • 제43권3호
    • /
    • pp.311-320
    • /
    • 2012
  • The higher-order asymptotic C(t) - $A_2(t)$ approach was employed to investigate the crack-tip stress of two collinear cracks in a power-law creeping material under the plane strain conditions. A comprehensive calculation was made of the single crack, collinear crack model with S/a = 0.4 and 0.8, by using the C(t) - $A_2(t)$ approach, HRR-type field and the finite element analysis; the latter two methods were used to check the constraint significance and the calculation accuracy of the C(t) - $A_2(t)$ approach, respectively. With increasing the creep time, the constraint $A_2$ was exponentially increased in the small-scale creep stage, while no discernible dependency of the constraint $A_2$ on the creep time was found at the extensive creep state. In addition, the creep time and the mechanical loads have no distinct influence on accuracy of the results obtained from the higher-order asymptotic C(t) - $A_2(t)$ approach. In comparison with the HRR-type field, the higher-order asymptotic C(t) - $A_2(t)$ solution matches well with the finite element results for the collinear crack model.

균열 진전의 효과를 고려한 $C^*$ 적분의 수정 (A Modification of the $C^*$ Integral Considering the Effect of Crack Growth)

  • 최영환;방종명;염윤용;송지호
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.77-86
    • /
    • 1989
  • 본 연구에서는 $C^{*}$ 적분을 수정하여 균열 진전의 효과를 배제하는 새로운 크립 파괴의 하중 매개변수 $C_{m}$ 을 제안하고 그 타당성을 검토한다. 또한 $C_{m}$ 의 전개 과정에서 유도되는 다른 하중 매개변수들의 특성과 그 이용가능성을 조사한다. 균열 진전 속도가 $C^{*}$ 의 지배를 받는 것으로 알려져 있는 스테인레스 강(stainless steel) STS 304(KS 규격)를 사용한 크립파괴 실험을 600.deg. C에서 수행하여 $C_{m}$ 의 크립 파괴에 대한 적용 가능성을 조사하도록 한다.

고강도 콘크리트 부재의 크리프 및 건조수축 특성에 관한 실험적 연구 (An Experimental Study on the Creep and Shrinkage Behavior of High-Strength Concrete Members)

  • 오병환;엄주용;유승운;차수원;임동환
    • 대한토목학회논문집
    • /
    • 제13권2호
    • /
    • pp.31-40
    • /
    • 1993
  • 콘크리트가 구조용 재료로써 활용되기 시작한 이래 크리프와 건조수축의 특성 규명을 위한 연구는 많은 연구자들에 의해 수행되어 왔다. 그러나 그 거동은 아직도 명확히 규명된 것은 아니며 이는 고강도 콘크리트의 경우 더욱 그러하다. 따라서 본 연구는 현재 국내에서 그 사용이 늘어나고 있는 고강도 콘크리트의 크리프 및 건조수축특성에 대한 기본적인 자료를 제공하기 위해 수행되었다. 본 연구의 주된 변수는 고강도 콘크리트, 배근유무, 철근비, 건조조건, 재하재령 등이며, 이들의 영향에 대한 크리프 및 건조수축특성을 규명하였다. 이것은 앞으로 고강도콘크리트구조물 설계에 중요한 자료가 될 것으로 사료된다.

  • PDF

Long-term deflection prediction in steel-concrete composite beams

  • Lou, Tiejiong;Wu, Sishun;Karavasilis, Theodore L.;Chen, Bo
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.21-33
    • /
    • 2021
  • This paper aims to improve the current state-of-the-art in long-term deflection prediction in steel-concrete composite beams. The efficiency of a time-dependent finite element model based on linear creep theory is verified with available experimental data. A parametric numerical study is then carried out, which focuses on the effects of concrete creep and/or shrinkage, ultimate shrinkage strain and reinforcing bars in the slab. The study shows that the long-term deformations in composite beams are dominated by concrete shrinkage and that a higher area of reinforcing bars leads to lower long-term deformations and steel stresses. The AISC model appears to overestimate the shrinkage-induced deflection. A modified ACI equation is proposed to quantify time-dependent deflections in composite beams. In particular, a modified reduction factor reflecting the influence of reinforcing bars and a coefficient reflecting the influence of ultimate shrinkage are introduced in the proposed equation. The long-term deflections predicted by this equation and the results of extensive numerical analyses are found to be in good agreement.

배관에 존재하는 원주방향 표면균열에 대한 파괴거동 해석 (I) -J-적분 예측식 - (Fracture Behavior Estimation for Circumferential Surface Cracked Pipes (I) - J-Integral Estimation Solution -)

  • 김진수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.131-138
    • /
    • 2002
  • This paper provides the fully plastic J solutions for circumferential cracked pipes with inner, semi- elliptical surface cracks, subject to internal pressure and global bending. Solutions are given in the form of two different approaches, the GEF/EPRl approach and the reference stress approach. For the GE/EPRl approach, the plastic influence functions for fully plastic J are tabulated based on extensive 3-D FE calculations using the Ramberg-Osgood (R-O) materials, covering a wide range of pipe and crack geometries. The developed GEf/EPRl-type fully plastic J estimation equations are then re-formulated using the concept of the reference stress approach for wider applications. Based on the FE results, optimized reference load solutions for the definition of the reference stress are found for internal pressure and for global bending. Advantages of the reference stress based approach over the GE/EPRl-type approach are fully discussed. Validation of the proposed reference stress based J estimation equations will be given in Part II, based on 3-D elastic-plastic or elastic creep FE results using typical tensile properties of stainless steels and generalized creep- deformation behaviours.

새로운 아스팔트 혼합물의 저온응력 계산 기법에 대한 고찰: 라플라스 변환 (An Alternative One-Step Computation Approach for Computing Thermal Stress of Asphalt Mixture: the Laplace Transformation)

  • 문기훈;권오선;조문진
    • 대한토목학회논문집
    • /
    • 제39권1호
    • /
    • pp.219-225
    • /
    • 2019
  • 겨울철 발생하는 아스팔트 혼합물의 저온균열의 정량적 분석 및 평가를 위해서는 해당 아스팔트 혼합물의 저온응력이 반드시 계산되어야 하며, 이는 현재 대한민국, 미국 북부 및 캐나다 지역에서 포장 유지관리, 설계에 있어서 매우 중요한 사항 중 하나이다. 일반적으로 아스팔트 혼합물의 저온응력은 크리프 시험과 시간중첩이론을 바탕으로 계산되며 전통적으로 두 수학적 단계를 통해 계산된다. 우선 수학적, 수치적 변환과정(홉킨스-해밍 알고리즘)을 통해 크리프-강성응력에서 이완응력이 계산된다. 다음으로 이완응력 지배곡선을 구현한 후 회선적분의 수치해석적 접근을 통해 아스팔트 혼합물의 저온응력이 최종적으로 계산된다. 상기의 과정은 복잡하며, 시간이 오래 걸리는 단점이 있다. 이번 논문에서는 보다 간편한 라플라스 변환을 통해 해당 아스팔트 혼합물의 저온응력을 계산하였으며, 이의 결과를 전통적 계산 기법과 비교, 분석하였다. 결론적으로 새로이 제안된 라플라스 변환 기법은 보다 아스팔트 혼합물의 저온응력을 효과적, 효율적으로 계산할 수 있음이 발견되었다.

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • 국제초고층학회논문집
    • /
    • 제1권1호
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

참조응력개념을 이용한 국부감육배관 평가법 개발 (Development of Assessment Methodology for Locally Corroded Pipe Using Reference Stress Concept)

  • 임환;심도준;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1200-1209
    • /
    • 2003
  • In this paper, a unified methodology based on the local stress concept to estimate residual strength of locally thinned pipes. An underlying idea of the proposed methodology is that the local stress in the minimum section for locally thinned pipe is related to the reference stress, popularly used in creep problems. Then the problem remains how to define the reference stress, that is the reference load. Extensive three-dimensional finite element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Based on these FE results, the reference load is proposed, which is independent of materials. A natural outcome of this method is the maximum load capacity. By comparing with existing test results, it is shown that the reference stress is related to the fracture stress, which in turn can be posed as the fracture criterion of locally thinned pipes. The proposed method is powerful as it can be easily generalised to more complex problems, such as pipe bends and tee-joints.