• Title/Summary/Keyword: Extension tube diameter

Search Result 8, Processing Time 0.019 seconds

Effect of an inner diameter of the extension tube on the self-ignition characteristics (튜브 내경 변화에 따른 고압 수소의 튜브 내 자발 점화 특성)

  • Kim, Seihwan;Lee, Hyoung Jin;Park, Ji Hyun;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.11-12
    • /
    • 2013
  • To investigate the effect of an inner diameter of the extension tube on the self-ignition when high pressurized hydrogen abruptly released through a tube, both experimental and numerical approach are used. The result show that there is a possibility to have successful ignition when the tube diameter is decreased even at the pressure that could not give sustainable flame with a larger diameter tube. Numerical simulation show the flame development inside the tube and weak and stretch flame spout the tube for 10.9 mm tube, whereas strong complete flame has been generated for 3 mm tube.

  • PDF

Investigation on the Self-ignition of High-pressure Hydrogen in a Tube between Different Inner Diameter (튜브 직경에 따른 고압 수소의 자발 점화 현상에 대한 연구)

  • Kim, Sei Hwan;Jeung, In-Seuck;Lee, Hyoung Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.36-43
    • /
    • 2018
  • Numerical simulations and experiments are performed to investigate the flame development inside tubes with different diameters at the same burst pressure. It is shown that generation of a stable flame play a role in self-ignition. In the smaller tube, multi-dimensional shock interaction is occurred near the diaphragm. After flame of a cross-section is developed, stable flame remains for a moment then it grows having enough energy to overcome the sudden release at the exit. Whereas shock interaction generate complex flow further downstream for a larger tube, it results in stretched flame. This dispersed flame has lower average temperature which makes it easily extinguished.

Constitutive equations for polymer mole and rubbers: Lessons from the $20^{th}$ century

  • Wagner, Manfred H.
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.4
    • /
    • pp.293-304
    • /
    • 1999
  • Refinements of classical theories for entangled or crosslinked polymeric systems have led to incommensurable models for rubber networks and polymer melts, contrary to experimental evidence, which suggests a great deal of similarity. Uniaxial elongation and compression data of linear and branched polymer melts as well as of crosslinked rubbers were analyzed with respect to their nonlinear strain measure. This was found to be the result of two contributions: (1) affine orientation of network strands, and (2) isotropic strand extension. Network strand extension is caused by an increasing restriction of lateral movement of polymer chains due to deformation, and is modelled by a molecular stress function which in the tube concept of Doi and Edwards is the inverse of the relative tube diameter. Up to moderate strains, $f^2$ is found to be linear in the average stretch for melts as well as for rubbers, which corresponds to a constant tube volume. At large strains, rubbers show maximum extensibility, while melts show maximum molecular tension. This maximum value of the molecular stress function governs the ultimate magnitude of the strain-hardening effect of linear and long-chain branched polymer melts in extensional flows.

  • PDF

Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H.;Rolon-Garrido, Victor H.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.203-211
    • /
    • 2009
  • In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.

Experimental and analytical behaviour of cogged bars within concrete filled circular tubes

  • Pokharel, Tilak;Yao, Huang;Goldsworthy, Helen M.;Gad, Emad F.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1067-1085
    • /
    • 2016
  • Recent research on steel moment-resisting connection between steel beams and concrete filled steel tubes has shown that there are considerable advantages to be obtained by anchoring the connection to the concrete infill within the tube using anchors in blind bolts. In the research reported here, extensive experimental tests and numerical analyses have been performed to study the anchorage behaviour of cogged deformed reinforcing bars within concrete filled circular steel tubes. This data in essential knowledge for the design of the steel connections that use anchored blind bolts, both for strength and stiffness. A series of pull-out tests were conducted using steel tubes with different diameter to thickness ratios under monotonic and cyclic loading. Both hoop strains and longitudinal strains in the tubes were measured together with applied load and slip. Various lead-in lengths before the bend and length of tailed extension after the bend were examined. These dimensions were limited by the dimensions of the steel tube and did not meet the requirements for "standard" cogs as specified in concrete standards such as AS 3600 and ACI 318. Nevertheless, all of the tested specimens failed by bar fracture outside the steel tubes. A comprehensive 3D Finite Element model was developed to simulate the pull-out tests. The FE model took into account material nonlinearities, deformations in reinforcing bars and interactions between different surfaces. The FE results were found to be in good agreement with experimental results. This model was then used to conduct parametric studies to investigate the influence of the confinement provided by the steel tube on the infilled concrete.

A Study on the Measurement of Fracture Resistance Characteristics for Steam Generator Tubes (증기발생기 세관의 파괴저항 특성 측정에 관한 연구)

  • Chang Yoon-Suk;Huh Nam-Su;Ahn Min-Yong;Hwang Seong-Sik;Kim Joung-Soo;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.420-427
    • /
    • 2006
  • The structural and leakage integrity of steam generator tubes should be sustained against all postulated loads even if a crack is present. During the past three decades, most of the efforts with respect to integrity evaluation of steam generator tubes have been focused on limit load solutions but, recently, the applicability of elastic-plastic fracture mechanics was examined cautiously due to its effectiveness. The purpose of this paper is to introduce a testing method to estimate fracture resistance characteristics of steam generator tubes with a through-wall crack. Due to limited thickness and diameter, inevitably, the steam generator tubes themselves were tested instead of standard specimen or alternative ones. Also, a series of three dimensional elastic-plastic finite element analyses were carried out to derive closed-form estimation equations with respect to J-integral and crack extension for direct current potential drop method. Since the effectiveness of $J_{IC}$ as well as J-R curves was proven through comparison with those of standard specimens taken from pipes, it is believed that the proposed scheme can be utilized as an efficient tool for integrity evaluation of cracked steam generator tubes.

A study on the optimization design of pulse air jet system to improve bag-filter performance (여과집진기의 탈진 성능 향상을 위한 충격 기류 분사 시스템 최적화 설계에 관한 연구)

  • Hong, Sung-Gil;Jung, Yu-Jin;Park, Ki-Woo;Jeong, Moon-Heon;Lim, Ki-Hyuk;Suh, Hye-Min;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3792-3799
    • /
    • 2012
  • The dedusting characteristics of pulse air jet type dedusting system which is widely applied in the industries were identified by utilizing the computational fluid dynamics (CFD) and the dedusting performance in modified shape of dedusting unit was compared in this study. The review on the dedusting air volume, air stream distribution and inflow velocity distribution on each shape of dedusting part showed that the case of installing the nozzle on the blow tube (Case-3) and the case of installing the double intaking tube to the venturi (Case-4 and Case-5) were more excellent than the structure (Case-1) which is widely applied in the field in its amplification effect on the air volume and extension of stream width. The specification of venturi was decided to apply the selected Case-5 for the option of the commercial back filter. It is considered that the dedusting air volume will be maintained in maximum in the case of 50 mm and 90 mm for the diameter of internal and external intaking pipe respectively.

Effect of Low Night Temperature on Reproductive Organ Development in Relation to Pollen Viability of Bell Pepper (야간 저온조건이 파프리카 화분 활력 및 생식기관 발달에 미치는 영향)

  • Lim, Chae-Shin
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.581-586
    • /
    • 2009
  • Bell pepper plants (Capsicum annuum cv. Plenty) were grown under low night temperatures (LNT: day/night temperature of $28/13^{\circ}C$) and optimum night temperatures (ONT: day/night temperature of $28/20^{\circ}C$) in growth chambers. Pollen grains were collected from plants in the growth chamber and incubated at 10, 15, 20, 25, and $30^{\circ}C$. After 24 hr incubation, in both ONT and LNT, the highest percent pollen germinations were observed at $25^{\circ}C$ followed by germinations at $30^{\circ}C$. Percent pollen germination at $25^{\circ}C$ was 42% in ONT - two times higher than in LNT at 21%. Pollen tube length was much longer at ONT than at LNT, regardless of incubation temperature. Compared with other treatments, earlier and quicker pollen tube elongation was observed in ONT pollen grains incubated at $25^{\circ}C$. To find pollen viability in plant growing conditions, pollen grains were incubated in LNT ($28/13^{\circ}C$) and ONT ($28/20^{\circ}C$) growth chambers for 24 hr. Petri-dishes with pollen grains were put in the growth chambers at the beginning of the night condition. Pollen grains in the LNT growth chamber did not germinate at night ($13^{\circ}C$), but began to germinate when the day condition ($28^{\circ}C$) started. Pollen grains in the ONT condition, however, started germinating from the early night ($20^{\circ}C$) and germination continued during the day ($28^{\circ}C$). Plants in LNT showed increased flower stalk length, ovary diameter, stamen length, flower weight, and fruit length. LNT conditions did not impair seed set. There were no differences in seed sets between fruits at LNT and ONT. Normal seed sets in LNT show that fertilization may be completed during daytime. However, further investigation is needed to find what extent of temperature stress causes malformed and/or parthenocarpic fruits in this bell pepper.