• 제목/요약/키워드: Extended min-sum algorithm

검색결과 3건 처리시간 0.018초

Selection-based Low-cost Check Node Operation for Extended Min-Sum Algorithm

  • Park, Kyeongbin;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.485-499
    • /
    • 2021
  • Although non-binary low-density parity-check (NB-LDPC) codes have better error-correction capability than that of binary LDPC codes, their decoding complexity is significantly higher. Therefore, it is crucial to reduce the decoding complexity of NB-LDPC while maintaining their error-correction capability to adopt them for various applications. The extended min-sum (EMS) algorithm is widely used for decoding NB-LDPC codes, and it reduces the complexity of check node (CN) operations via message truncation. Herein, we propose a low-cost CN processing method to reduce the complexity of CN operations, which take most of the decoding time. Unlike existing studies on low complexity CN operations, the proposed method employs quick selection algorithm, thereby reducing the hardware complexity and CN operation time. The experimental results show that the proposed selection-based CN operation is more than three times faster and achieves better error-correction performance than the conventional EMS algorithm.

1.4 Gbps 비이진 LDPC 코드 복호기를 위한 Fully-Parallel 아키텍처 (Fully-Parallel Architecture for 1.4 Gbps Non-Binary LDPC Codes Decoder)

  • 최인준;김지훈
    • 전자공학회논문지
    • /
    • 제53권4호
    • /
    • pp.48-58
    • /
    • 2016
  • 본 논문은 GF(64) (160,80) 정규 (2,4) 비이진 LDPC 코드 복호기를 위한 높은 처리량의 병렬 아키텍처를 제안한다. 복호기의 복잡도를 낮추기 위해 체크 노드와 변수 노드의 차수가 작은 코드를 사용하며 뛰어난 에러 정정 성능을 위해 높은 위수의 유한체에서 정의된 코드를 사용한다. 본 논문은 Fully-parallel 아키텍처를 설계하고 체크 노드와 변수 노드를 interleaving하여 복호기의 데이터 처리량을 향상시켰다. 또한 체크 노드의 초기화 지연을 단축시킬 수 있는 조기 분류 기법을 제안하여 데이터 처리량을 추가로 향상시켰다. 제안된 복호기는 1 iteration에 37사이클이 소요되며 625MHz 동작주파수에서 1402Mbps의 데이터 처리량을 갖는다.

세션의 동적 대역폭 요구를 지원하는 최대-최소 흐름제어 (MAX-MIN Flow Control Supporting Dynamic Bandwidth Request of Sessions)

  • 조혁래;정송;장주욱
    • 제어로봇시스템학회논문지
    • /
    • 제6권8호
    • /
    • pp.638-651
    • /
    • 2000
  • When the bandwidth resources in a packet-switched network are shared among sessions by MAX-MIN flow control each session is required to transmit its data into the network subject to the MAX-MIN fair rate which is solely determined by network loadings. This passive behavior of sessions if fact can cause seri-ous QoS(Quality of Service) degradation particularly for real-time multimedia sessions such as video since the rate allocated by the network can mismatch with what is demanded by each session for its QoS. In order to alleviate this problem we extend the concept of MAX-MIN fair bandwidth allocations as follows: Individual bandwidth demands are guaranteed if the network can accommodate them and only the residual network band-width is shared in the MAX-MIN fair sense. On the other hand if sum of the individual bandwidth demands exceeds the network capacity the shortage of the bandwidth is shared by all the sessions by reducing each bandwidth guarantee by the MAX-MIN fair division of the shortage. we present a novel flow control algorithm to achieve this extended MAX-MIN fairness and show that this algorithm can be implemented by the existing ATM ABR service protocol with minor changes. We not only analyze the steady state asymptotic stability and convergence rate of the algorithm by appealing to control theories but also verify its practical performance through simulations in a variety of network scenarios.

  • PDF