• Title/Summary/Keyword: Extended electromotive force (EEMF)

Search Result 4, Processing Time 0.02 seconds

Simple Sensorless Control of Interior Permanent Magnet Synchronous Motor Using PLL Based on Extended EMF

  • Han, Dong Yeob;Cho, Yongsoo;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.711-717
    • /
    • 2017
  • This paper proposes an improved sensorless control to estimate the rotor position of an interior permanent magnet synchronous motor. A phase-locked loop (PLL) is used to obtain the phase angle of the grid. The rotor position can be estimated using a PLL based on extended electromotive force (EEMF) because the EEMF contains information about the rotor position. The proposed method can reduce the burden of calculation. Therefore, the control period is decreased. The simulation and experimental results confirm the effectiveness and performance of the proposed method.

Restarting Method for EEMF Based Sensorless Permanent Magnet Synchronous Motor Drive Systems (EEMF 기반 센서리스 영구자석 동기전동기 구동 시스템의 구동 재개 방법)

  • Lee, Young-Jae;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • This paper proposes a restarting method for extended electromotive force (EEMF)-based sensorless permanent magnet synchronous motor (PMSM) drive systems. The sensorless PMSM drive systems generally estimate the rotor speed and angle based on EEMF. However, if the inverter is stopped while the PMSM is rotating, the initial rotor speed and angle are required for restart. Therefore, the proposed restarting method estimates the initial rotor speed and angle using the short-circuit current generated by applying zero voltage vector from the inverter. The validity of the proposed method is verified by simulation and experimental results.

Sensorless Control Strategy of IPMSM Based on a Parallel Reduced-Order EKF (병렬형 저감 차수 칼만 필터를 이용한 IPMSM의 센서리스 제어)

  • Yim, Dong-Hoon;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.448-449
    • /
    • 2010
  • This paper proposes a sensorless control strategy for the Interior Permanent Magnet Synchronous Motor (IPMSM) by using the parallel reduced-order Extended Kalman Filter. The sensorless control strategy is composed with two EKFs alternately computed every sampling period with a new model. The new model is based on the extended electromotive force (EEMF) which has a simple structure, making position estimation possible without approximation. The proposed strategy can save computation time and estimate rotor speed and position. To verify the merit of the proposed strategy, simulation and experimental results validate the theoretical analysis and show the feasibility of the proposed control strategy.

  • PDF

Improved Transition Method for Sensorless Operation of Interior Permanent Magnet Synchronous Motor Drives (매입형 영구자석 동기기 센서리스 구동부의 개선된 절환 기법)

  • Han, Dong Yeob;Yoon, Jae Seung;Cho, Yongsoo;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1362-1368
    • /
    • 2016
  • This paper proposes the improved transition scheme for a sensorless drive of an interior permanent magnet synchronous motor (IPMSM). In order to operate the IPMSM, the current controller can be used until 300 rpm for the initial operation. After that, the control method of IPMSM is changed to the speed controller for the sensorless control method. At that point, the rotor speed overshoot is generated due to the rapid change of the current reference for the speed controller. The proposed algorithm is able to reduce the overshoot of a rotor speed by compensating the estimated feedforward value to the speed controller. The feedforward value of the current reference is estimated by using a coordinate transformation and is approximated to the current reference after the transition of the control mode. The effectiveness of the proposed scheme is verified by experiments using an IPMSM drive system.