• Title/Summary/Keyword: Extended Maxwell-Wagner polarization

Search Result 3, Processing Time 0.021 seconds

Extended Maxwell-Wagner Polarization Model with Onsager Theory for the Electrorheological Phenomena (전기유변현상 해석을 위하여 Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.767-772
    • /
    • 2018
  • Among various mechanisms for ER phenomena, the electrostatic polarization and conduction models were known as the most promising theoretical models. However, many inherited defects have limited their uses for the development of effective ER fluids. To resolve these problems, extended Maxwell-Wagner polarization model with Onsager theory was developed. It was observed that the extended model resolved the problems, suggesting that the extended model can be used for the development of effect ER fluids.

Simulation of Electrorheological Fluids by the Extended Maxwell-Wagner Polarization Model with Onsager Theory (Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델에 의한 전기유변 현상 모사)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.480-485
    • /
    • 2020
  • The extended Maxwell-Wagner polarization model is employed to describe the ER behavior of the conducting particle ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. The simulation results show the nonlinear ER behavior (Δτ∝En, n≈1.5) of the conducting particle ER suspensions. The response point, where shear stress reaches steady-state, is the point where stable break-up and rebuild of the chain-like structure of particles reaches. Also, it shows the minimum of shear stress, which corresponds the start-up of random particle configuration. The shear stress reaches plateau as particle volume fraction increases.

Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes by the Extended Maxwell-Wagner Polarization Model (확장된 Maxwell-Wagner 분극 모델에 의한 서로 크기가 다른 입자들로 구성된 이성분계 전기유변 유체의 전산 모사)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.613-619
    • /
    • 2022
  • The extended Maxwell-Wagner polarization model is employed to describe the ER(Electrorheological) behavior of bi-dispersed ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. Under the same particle volume fraction, it is found that the dynamic yield stresses of uniform size suspensions do not depend on the particle size. Compared with uniform size suspensions, the dynamic yield stress is reduced for ER fluids consisting of two kinds of particles with different sizes. Compared with the dynamic yield stress behavior, for ${\dot{\gamma}}^*$≧0.01 the shear stress shows different behaviors depending on the particle sizes and the raio of different size particles. The simulation results show the nonlinear ER behavior (∆𝛕 ∝ En, n ≈ 1.55) of the conducting particle ER suspensions.