• Title/Summary/Keyword: Expressway bridge

Search Result 94, Processing Time 0.022 seconds

[Retracted]Analysis of Minimum Penetrated Depth of Pile bent of IPM Bridge ([논문철회]토압분리형 일체식 교대 교량의 파일벤트에 대한 최소근입깊이 해석)

  • Kim, Hongbae;Kim, Taesu;Park, Jongseo;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.45-53
    • /
    • 2017
  • IPM bridge was developed to revise the problems of IAB bridge by Nam et al, (2016). This research conducted the p-y analysis to examine the parameter traits among the protruded length (H), penetrated length (L) of pile bent and soil conditions. From the results, the maximum bending moment happened in the top segment of pile bent, because it is integrated to the upper structure. Also, the maximum shear force was shown in the boundary of the sand and weathered soil zones according to the analysis soil conditions. The maximum member force and unbraced length is converged when the ratio (L/H) of protruded length (H) and penetrated length (L) is 1.0. The larger material force is happened, if the pile bent is penetrated shallowly compared to the protruded length. The definite inflection points were shown in the horizontal displacement curve from the p-y analysis, also the smaller penetrated length made the curve grade slower.

Crash Characteristics within the Bridge Influence Area of Expressway Using the Discriminant Analysis (판별분석을 이용한 고속도로 교량영향권역 교통사고 특성분석에 관한 연구)

  • Park, JeJin
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.149-158
    • /
    • 2014
  • PURPOSES : The bridge section of the expressway has a worse driving environment than the general section. However, traffic safety countermeasures are focused only on the bridge section. Traffic safety countermeasures on the section before entry to the bridge and the section after exit from the bridge are applied only when the bridge has a long-span section. Accordingly, this study will verify the necessity of extending the application of traffic safety countermeasures to areas that are affected by the bridge. METHODS : This study determines the areas that are affected by the bridge as well as the areas that are affected by locations with frequent traffic accidents and suggests the risk factors by affected areas through canonical discriminant analysis. For the analysis, traffic accident data for 3 years, which occurred on bridge sections in six major expressway lines, were used. RESULTS : The numbers of traffic accidents were 469 before the bridge, 281 on the bridge, and 468 after the bridge. The variables that have impact on the seriousness of accidents are as follows: speeding, excess manipulation of the steering wheel, and failure to secure safety distance for accidents that occurred before the bridge section; speeding, excess manipulation of the steering wheel, and dozing off for accidents that occurred on the bridge; and speeding and failure to secure safety distance for accidents that occurred after the bridge section. CONCLUSIONS : Areas affected by the bridge show higher accident rates than the bridge section; therefore, imposing traffic safety countermeasures on the integrated section of the bridge and the affected areas is required. It is believed that the results suggested in this study could be effectively used in the prevention of traffic accidents by imposing custom-made safety countermeasures for each section.

Bridge Design of Seoul Expressway (North Area) (도시고속화도로(북부간선)의 교량설계)

  • 변윤주;김우종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.135-139
    • /
    • 1991
  • The Seoul expressway is designed with prestressed concrete box girders. As a construction method, Precast Free Cantilever Method (P.F.C.M) is used which is introduced to Korea first time. Especially, the end spans in each bridge are designed to be constructed by cantilever method using temporary cantilever tendons. And pier and pierhead are prestressed vertically and horizontally.

  • PDF

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (II-Proposal for the Seismic Design Procedure) (마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(II-내진설계 절차 제안))

  • Gil, Heungbae;Park, Sun Kyu;Han, Kyoung Bong;Yoon, Wan Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.169-178
    • /
    • 2020
  • In a previous paper, ambient vibration tests were conducted on a cable stayed bridge with resilient-friction base isolation systems (R-FBI) to extract the dynamic characteristics of the bridge and compare the results with a seismic analysis model. In this paper, a nonlinear seismic analysis model was established for analysis of the bridge to compare the difference in seismic responses between nonlinear time history analysis and multi-mode spectral analysis methods in the seismic design phase of cable supported bridges. Through these studies, it was confirmed that the seismic design procedures of the "Korean Highway Bridge Design Code (Limit State Design) for Cable Supported Bridges" is not suitable for cable supported bridges installed with R-FBI. Therefore, to reflect the actual dynamic characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure is proposed that applies the seismic analysis method differently depending on the seismic isolation effect of the R-FBI for each seismic performance level.

Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (I- Analysis of Field Testing of Cable Supported Bridge) (마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(I-실 교량 실험 결과 분석))

  • Gil, Heungbae;Park, Sun Kyu;Han, Kyoung Bong;Yoon, Wan Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.157-167
    • /
    • 2020
  • In this study, a field bridge test was conducted to find the dynamic properties of cable supported bridges with resilient-friction base isolation systems (R-FBI). Various ambient vibration tests were performed to estimate dynamic properties of a test bridge using trucks in a non-transportation state before opening of the bridge and by ordinary traffic loadings about one year later after opening of the bridge. The dynamic properties found from the results of the tests were compared with an analysis model. From the result of the ambient vibration tests of the cable supported bridge with R-FBI, it was confirmed that the dynamic properties were sensitive to the stiffness of the R-FBI in the bridge, and the seismic analysis model of the test bridge using the effective stiffness of the R-FBI was insufficient for reflecting the dynamic behavior of the bridge. In the case of cable supported bridges, the seismic design must follow the "Korean Highway Bridge Design Code (Limit State Design) for Cable supported bridges." Therefore, in order to reflect the actual behavior characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure should be proposed.

Estimation of Live Load Effect of Single Truck Through Probabilistic Analysis of Truck Traffic on Expressway (고속도로 통행차량 통계 분석을 통한 단독차량의 활하중 효과 추정)

  • Yoon, Taeyong;Ahn, Sang-Sup;Kwon, Soon-Min;Paik, Inyeol
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • PURPOSES : This study estimated the load effect of a single heavy truck to develop a live load model for the design and assessment of bridges located on an expressway with a limited truck entry weight. METHODS : The statistical estimation methods for the live load effect acting on a bridge by a heavy vehicle are reviewed, and applications using the actual measurement data for trucks traveling on an expressway are presented. The weight estimation of a single vehicle and its effect on a bridge are fundamental elements in the construction of a live load model. Two statistical estimation methods for the application of extrapolation in a probabilistic study and an additional estimation method that adopts the extreme value theory are reviewed. RESULTS : The proposed methods are applied to the traffic data measured on an expressway. All of the estimation methods yield similar results using the data measured when the weight limit has been relatively well observed because of the rigid enforcement of the weight regulation. On the other hand, when the estimations are made using overweight traffic data, the resulting values differ with the estimation method. CONCLUSIONS : The estimation methods based on the extreme distribution theory and the modified procedure presented in this paper can yield reasonable values for the maximum weight of a single truck, which can be applied in both the design and evaluation of a bridge on an expressway.

Thermal-Structure Interaction Parallel Fire Analysis for Steel-Concrete Composite Structures under Bridge Exposed to Fire Loading (화재에 노출된 교량하부 강합성 구조물에 대한 열-구조 연성 병렬화재해석)

  • Yun, Sung-Hwan;Gil, Heungbae;Lee, Ilkeun;Kim, Wooseok;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.283-292
    • /
    • 2013
  • The objective of this research is to evaluate of global and local damage for steel-concrete composite structures under highway bridge exposed to fire loading. To enhance the accuracy and efficiency of the numerical analysis, the proposed transient nonlinear thermal structure interaction(TSI) parallel fire analysis method is implemented in ANSYS. To validate the TSI parallel fire analysis method, a comparison is made with the standard fire test results. The proposed TSI parallel fire analysis method is applied to fire damage analysis and performance evaluation for Buchen highway bridge. The result of analysis, temperature of low flange and web are exceed the critical temperature. The deflection and deformation state show good agreement with the fire accident of buchen highway bridge.

A Numerical Analysis of Tolerable Settlement for Bridges (수치해석에 의한 중소형교량 교량기초의 허용침하량 평가)

  • Jung, Gyung-Ja;Jeon, Kyung-Soo;Cho, Jun-Sang;Lee, Sang-Heon;Byun, Hyung-Kyoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.569-579
    • /
    • 2010
  • Tolerable vertical displacement of a bridge is dependent on the superstructure-type, slope, span, and etc.. In the design stage, however, resultant force of cross section is examined supposed that the settlement is 1 cm at the bearing point. And the 1cm is sometimes considered as if the criteria of allowable foundation settlement. It is needed to establish the criteria of the tolerable displacement for the small and middle bridges which are widely used in domestic area. The design data of domestic bridges including expressway bridges were collected and analyzed according to the types of superstructures and foundations. And numerical simulations were conducted for RC rigid frame bridges, PSC girder bridges, IPC girder bridges, PSC box girder bridges, and steel box girder bridges to examine the tolerable displacements.

  • PDF

Reliability Evaluation of Lateral Spring Constant Applied in Design of Pile Foundation for Bridge Abutment (교대 말뚝기초 설계 시 적용되는 횡방향 스프링정수의 신뢰성 평가)

  • Do, Jongnam;Kim, Nagyoung;Lee, Hyunseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.5
    • /
    • pp.13-21
    • /
    • 2020
  • In this study, the reliability of the lateral spring constant (k1) applied during design of pile foundation for bridge abutment was evaluated. To do this, the reliability of the factors related to the prediction of the lateral displacement of the abutment pile foundation, which was designed based on the displacement method proposed by Chang (1937), was analyzed. The data used for analysis were the design statements of ◯◯ bridge and ◯◯ IC2 bridge. Then, it was derived by comparing with the numerical analysis (p-y analysis) based on the basic data.