• Title/Summary/Keyword: Exposure fire

Search Result 266, Processing Time 0.021 seconds

Utilization of Immersion-Drying Method for Measuring Damage Depth of Fire-Damaged High-Strength Concrete (화재로 손상된 고강도 콘크리트의 손상 깊이 측정을 위한 수중침지 건조방법의 활용)

  • Kim, Jong;Lim Gun-Su;Beak, Seung-Bok;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.297-308
    • /
    • 2024
  • This study presents a novel approach for evaluating fire-induced damage depth in concrete. The methodology leverages the principle that exposure to high temperatures causes internal expansion within concrete, leading to increased voids and microcracks in the damaged zones. This heightened porosity results in greater absorption rates compared to undamaged areas. By immersing fire-damaged concrete samples in water and subsequently monitoring the drying process, the depth of damage can be assessed. Differences in drying rates and color variations between damaged and undamaged areas serve as visual indicators for determining the extent of the damage. Experimental results from this water immersion method revealed damage depths of 38.7mm and 37.5mm for two different concrete mixtures. These measurements notably surpass the damage depths estimated using traditional phenolphthalein-based methods. This discrepancy suggests that utilizing the absorption rate principle, which is directly linked to the physical changes caused by thermal expansion, offers a more accurate and sensitive assessment of fire damage depth compared to methods relying solely on the presence of Portlandite for colorimetric indication.

Mechanical Deterioration Characteristics of ACSR due to a Flame (화염으로 인한 ACSR의 기계적 열화 특성)

  • 박창기;이광식;강지원;김영달
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.160-168
    • /
    • 2003
  • In Korea, a large portion of aerial power-transmission cables is installed in the mountains. In the case of a fire in the mountains, steel wires coated with zinc and aluminum wires of those power cables exposed to the fire or near around will be deteriorated by the blaze and the high temperature. Deterioration proceeds by interactions of a variety of factors like quality, manufacturing process, the condition of installation and exposure environment of a wire, and so on. Generally, the characteristic of a conductor affect by a forest fire can not be analyzed without the effect through simulating a forest fire. However, there are little research accomplishments of that kind of simulation about it, and there's been no analysis of a sample exposed to an actual forest fire. This thesis shows the experimental results that apply to a new wire by an artificial flame-maker because it's difficult to directly analyze the characteristic of deterioration by a forest fire. Those results include the intensity of extension and wrench for a conductor. In addition, there's been an experiment and analysis about the mechanical characteristics of the wire of ACSR 480[$\textrm{mm}^2$] which was removed from Pohang area by a forest fire. Then, the database will be made to predict the state of deteriorated wires by a forest fire using those two data, and data necessary to diagnose the life state of an ACSR wire affected by a forest fire will be given.

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • To prevent the explosive spalling of the high strength concrete and control the rise of temperature in the steel rebar during fire, a fiber cocktail method has been proposed simultaneously with the use of polypropylene and steel fiber. After applying the fiber cocktail (polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of between 40 and 100 MPa and evaluating the thermal properties at elevated temperatures, the fire test was carried out on structural members in order to evaluate the fire resistance performance. Two column specimens were exposed to the fire without loading for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed and the original color of specimen surface was changed to light pinkish grey. The inner temperature of concrete dropped rapidly starting from 60mm deep. After 60 minutes of exposure to the fire, the temperature gradient of fiber cocktail reinforced high strength concrete was measured as 2.2oC/mm, which is approximately 5 times less than that of normal concrete. The final temperatures of steel rebar after 180 minutes of fire test resulted in 488.0oC for corner rebar, 350.9oC for center rebar, and 419.5oC for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 137.1oC The tendency of temperature rise in concrete and steel rebar changed between 100oC and 150oC The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

Experimental and Numerical Study of Fire Resistance of Composite Beams (무피복 합성보의 내화성능에 대한 실험 및 해석적 연구)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.143-153
    • /
    • 2015
  • In this paper, the standard fire resistance test under load and associated numerical study were carried out to evaluate the fire resistance of unprotected partially encased beams and slimfloor beams. The temperature evolution and the deflection increase of the composite beam specimens were investigated and the effects of the key behavioral parameters including the load ratio, the reinforcement, and the fire exposure were analyzed. The test results showed that the temperature rise of the partially encased beams and slimfloor beams is considerably slow compared to the conventional H-shape composite beams. Up to at least 90 minutes, the reinforcements in the partially encased composite beams maintained below the temperature at which the cold steel strength is sustained. Unprotected partially encased beams and slimfloor beams in the experimental program achieved the fire resistance more than 2 hours according to the limiting deflection criteria. This implies that unprotected partially encased beams and slimfloor beams can be very promising alternatives to enhancing the fire resistance of steel beams. This study also conducted the fully coupled thermal-stress analysis by using the commercial code ABAQUS to the thermal and structural behaviour of composite beams in fire. The numerical predictions provide acceptable correlations with the experimental results.

A Study on the transition of Explosion to Eire of LPG and Its' Prevention (LP가스 폭발 후 화재 전이 현상 및 전이 방지에 관한 연구)

  • 오규형;이성은
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.20-26
    • /
    • 2004
  • The purpose of this study is to investigate the transition mechanism and prevention mechanism of gas explosion to fire. Transition phenomena of explosion to fire of LPG in the explosion vessel of its size of TEX>$100 cm {\times} 60 cm {\times} 45 cm$ was visualized using the high speed video camera and the mechanism was analysed from the videograph. Newspaper size of $30cm {\times} 20cm$ was used for combustible sample in this experiments and LPG-air mixture was ignited by 10 ㎸ electric spark. Experimental parameter was gas concentration, size of vent area and position of combustible solid. Size of vent area were varied as $10cm {\times} 9cm, 13cm {\times} 10cm, 27cm {\times} 20cm, 40cm {\times} 27cm$, and the position of combustible was varied in 4 point. Carbon dioxide was used to study the prevention mechanism of explosion to fire transition of LPG. Based on this experiment we can find that transition possibility of explosion to fire on solid combustible from explosion is depends on concentration of LPG-air mixture and the exposure time of solid combustibles in high temperature atmosphere of flame and burnt gas. And cooling or inerting of the atmosphere after explosion can be prevent the transition of explosion to fire on solid combustibles from gas explosion.

Combustion Emission Gas Analysis and Health Hazard Assessment about P. densiflora and Q. variabilis Surface Fuel Beds (소나무, 굴참나무 낙엽의 연소 방출가스 분석 및 건강 위험성 평가)

  • Kim, Dong-Hyun;Kim, Eung-Sik;Lee, Myung-Bo
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.24-31
    • /
    • 2009
  • Based on fallen leaves of major Korean conifer species 'Pinus densiflora' and major Korean broadleaved species 'Quercus variabilis', this study sought to identify combustion emission gas types and measure their concentration by means of FTIR (Fourier Transform Infrared) spectrometer. As a result, it was found that there were total 13 types of combustion gas detected from fallen leaves of Pinus densiflora and Quercus variabilis, such as carbon monoxide, carbon dioxide, acetic acid, butyl acetate, ethylene, methane, methanol, nitrogen dioxide, ammonia, hydrogen fluoride, sulfur dioxide and hydrogen bromide. Notably, nitrogen monoxide was additionally detected from fallen leaves of Quercus variabilis. It was found that the overall concentration of combustion gas emitted from the fallen leaves of Pinus densiflora was 4.5 times higher than that from fallen leaves of Quercus variabilis. Particularly, it was found that emission concentration of some combustion emission gas types like carbon monoxide, carbon dioxide and butyl acetate exceeded the upper limit of their time-weighted average (TWA, ppm), while the emission concentration of carbon monoxide and carbon dioxide exceeded their short-term exposure limit (STEL, ppm) for both species. Thus, it was found that carbon monoxide and carbon dioxide have higher hazard to health than other gas types, because these two gas types account for higher than 99% of overall gas emission due to combustion of surface fire starting from litter layer in forest.

A Study Evalucation of Worker Exposure to Diatomaceous Earth Dust and Engineering Control in a Diatomite Factory (모 규조토 가공업체의 규조토 분진 폭로평가 및 개선방향에 관한 연구)

  • Cheong, Hoe Kyeong;Kim, Ji Yong;Cheong, Hae Kwan;Lim, Hyun Sul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.1
    • /
    • pp.81-95
    • /
    • 1994
  • This study was performed in a diatomite factory where silicosis had been found at October, 1993. The major objectives were to evaluate worker exposure to diatomaceous earth and to present engineering control methods for workplace management. Total and respirable dust of diatomaceous earth were measured. Size distribution of dust was analyzed by applying the multiple diffraction method. Also crystalline silica in respirable dust samples was analyzed qualitatively by X-ray diffraction. The suitable Local Exhaust Ventilation systems for that factory were recommended. The results were as follows. The airborne total and respirable dust concentrations by exposure groups showed approximate normal distribution. The means of total dust exposures at flour maufacturing, fire brick grinding and packaging, ceramic raws packaging processes exceeded Korean and ACGIH standards, $10mg/m^3$. The means of total and respirable dust concentrations to high exposure groups were 6.8 and 3.9 times higher than those of low expousre groups, respectively. The size distribution of diatomaceous earth dust was lognormal with a median diameter of $7.07{\mu}m$(range, $0.10-60.0{\mu}m$) and with a geometric standard deviation of 1.43. The crystalline silica in respirable dust samples was identified to quartz and cristobalite and/or tridymite. Above results suggest that engineering controls and periodic environmental and medical surveillances will be important for preventing silicosis in the diatomite factory.

  • PDF

Finite Element Analysis of Slender Reinforced Concrete Columns Subjected to Eccentric Axial Loads and Elevated Temperature (고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석)

  • Lee, Jung-Hwan;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • In this study, slender reinforced concrete columns subjected to high temperatures and eccentric axial loads are evaluated by finite element analysis employing Abaqus (a finite element analysis program). Subsequently, the analysis results are compared and assessed. The sequentially coupled thermal stress analysis provided by Abaqus was employed to reflect the condition of an axially loaded column exposed to fire. First, heat transfer analysis was performed on the column cross-section. After verifying the results, another analysis was conducted: the cross-section was transformed into a three-dimensional element and then structural analyzed. In the analysis process, the column was modeled by accounting for the effects of tension stiffening and initial imperfection that could affect convergence and accuracy. The analysis results were compared with 74 experimental records, and an average error of 6% was observed based on the fire exposure and resistance. The foregoing indicates that the fire resistance performance of reinforced concrete columns can be predicted through finite element analysis.

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub;Kharnoob, Majid M.;Akhmadeev, Ravil;Sevbitov, Andrei;Jalil, Abduladheem Turki;Kadhim, Mustafa M.;Hansh, Zahra J.;Mustafa, Yasser Fakri;Akhmadullina, Irina
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.551-561
    • /
    • 2022
  • In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.

Practical Predictive Formulas for Residual Strengths of Fire-Damaged Normal Strength Reinforced Concrete Square Columns (화해를 입은 보통강도 철근콘크리트 정방형 기둥의 실용 잔존내력식)

  • Lee, Cha-Don;Lee, Seung-Whan;Lee, Chang-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.3-12
    • /
    • 2006
  • The behavior of concrete structures subject to fire is complex, depending on many factors. The factors usually considered in research include the level and endurance of temperatures in concrete and reinforcing bars, the mechanical properties of the steel and concrete, moisture contents, cover thickness, existence of eccentricity, and member geometry among others. Although there are a few sophisticated numerical models which can trace the effects of these important parameters on the residual capacity of reinforced concrete columns damaged by fire, practical predictive formulas are in need for rapid yet reasonable assessment in practice. The practical formulas are developed in this study for fire-damaged normal strength reinforced concrete square columns, which can approximate the predictions of those sophisticated numerical models with ease in use. The formulas take into account the effects of exposure time to fire, concrete strength, reinforcement ratio and sectional area. The developed formulas are seen to correlate with the predictions of numerical model in a reasonable agreement. Some examples are also presented in determining the residual strength, safety and additionally needed strengths for a fire-damaged reinforced concrete column.